Sustainable Utilization of Environmental Liabilities: Incorporating Sands and Sludges from Mining Tailings as Cement Substitutes in 20 MPa Concrete Mix Designs for Tertiary Road Infrastructure

This research investigates the viability of incorporating sterile mining materials as partial alternatives to cement and sand in the construction of low-traffic road infrastructures. The study involved conducting chemical, physical, and mineralogical characterizations of the sterile materials throug...

Full description

Saved in:
Bibliographic Details
Institution:Universidad EIA
Main Authors: Bueno-Gómez, Heidy Thailin, López-Bernier, Yariagna Carolina, Caycedo-Garcia, Maya Sian, Delgado , Jose Antonio, García-Muñoz, Fernando, GAIA
Format: Trabajo de grado - Pregrado
Language:English
Published: Bucaramanga 2023-11-27
Subjects:
Online Access:https://repositorio.udes.edu.co/handle/001/9818
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:null:001-9818
recordtype dspace
spelling Caycedo-Garcia, Maya Sian
Bueno-Gómez, Heidy Thailin
López-Bernier, Yariagna Carolina
Delgado , Jose Antonio
García-Muñoz, Fernando
GAIA
2023-12-07T14:13:54Z
2023-12-07T14:13:54Z
2023-11-27
Digital
This research investigates the viability of incorporating sterile mining materials as partial alternatives to cement and sand in the construction of low-traffic road infrastructures. The study involved conducting chemical, physical, and mineralogical characterizations of the sterile materials through various tests. Analyses using XRF, XRD, and SEM revealed the presence of quartz and other carbonates in the tailings, indicating a chemical similarity with Clinker and suggesting their suitability as viable substitutes. Moreover, the sample demonstrated levels of Hg and CN- below detectable limits, establishing it as non-polluting and endorsing its suitability for use in construction materials. The physical characterization identified an optimal replacement range for cement by sterile materials at 10-20 %. Concrete formulations were developed and assessed with a 20 % substitution, demonstrating mechanical results comparable to those of traditional concrete. These findings affirm the potential of these waste materials to address their improper disposal in water bodies, posing a significant threat to water quality and human health. Consequently, advocating for their sustainable utilization in the construction industry.
Pregrado
Ingeniero(a) Civil
Ciencia en nuevos materiales de construcción
14 p
application/pdf
Universidad de Santander
T 20.23 B826s
Repositorio Digital Institucional Universidad de Santander
https://repositorio.udes.edu.co
https://repositorio.udes.edu.co/handle/001/9818
eng
Bucaramanga
Facultad de Ingenierías y Tecnologías
Ingeniería Civil
Babayan G, Sakoyan A, Sahakyan G. Drinking water quality and health risk analysis in the mining impact zone, Armenia. Sustain Water Resour Manag 2019;5:1877–86. https://doi.org/10.1007/s40899-019-00333-2.
Gombert P, Sracek O, Koukouzas N, Gzyl G, Valladares ST, Frączek R, et al. An Overview of Priority Pollutants in Selected Coal Mine Discharges in Europe. Mine Water Environ 2019;38:16–23. https://doi.org/10.1007/s10230-018-0547-8.
Lu J, Lu H, Lei K, Wang W, Guan Y. Trace metal element pollution of soil and water resources caused by small-scale metallic ore mining activities: a case study from a sphalerite mine in North China. Environ Sci Pollut Res 2019;26:24630–44. https://doi.org/10.1007/s11356-019-05703-z.
Palmer MJ, Chételat J, Richardson M, Jamieson HE, Galloway JM. Seasonal variation of arsenic and antimony in surface waters of small subarctic lakes impacted by legacy mining pollution near Yellowknife, NT, Canada. Sci Total Environ 2019;684:326–39. https://doi.org/10.1016/j.scitotenv.2019.05.258.
Belle G, Schoeman Y, Oberholster P. Potential Toxic-Element Pollution in Surface Water and Its Implications for Aquatic and Human Health: Source–Pathway–Receptor Model. Water (Switzerland) 2023;15:1–22. https://doi.org/10.3390/w15173100.
Cuevas JG, Faz A, Martínez-Martínez S, Gabarrón M, Beltrá JC, Martínez J, et al. Spatial distribution and pollution evaluation in dry riverbeds affected by mine tailings. Environ Geochem Health 2023:1–17. https://doi.org/10.1007/s10653-022-01469-5
Cáceres DD, Flores Jiménez P, Hernández K, Peres F, Maldonado AK, Klarián J, et al. Health risk due to heavy metal(Loid)s exposure through fine particulate matter and sedimented dust in people living next to a beach contaminated by mine tailings. Rev Int Contam Ambient 2021;37:211–26. https://doi.org/10.20937/RICA.53830
Dusengemungu L, Mubemba B, Gwanama C. Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects. Sci Rep 2022;12:1–16. https://doi.org/10.1038/s41598-022-15458-2
Lemos MG, Valente TM, Marinho Reis AP, Ferreira Fonseca RM, Guabiroba F, da Mata Filho JG, et al. Adding Value to Mine Waste through Recovery Au, Sb, and As: The Case of Auriferous Tailings in the Iron Quadrangle, Brazil. Minerals 2023;13. https://doi.org/10.3390/min13070863.
Pabón SE., Benítez R., Sarria-Villa RA., Gallo JA. Water contamination by heavy metals, analysis methods and removal technologies. A review. Entre Cienc e Ing 2020;14:9–18. https://doi.org/https://doi.org/10.31908/19098367.1734.
Barcelos DA, Pontes FVM, da Silva FANG, Castro DC, dos Anjos NOA, Castilhos ZC. Gold mining tailing: Environmental availability of metals and human health risk assessment. J Hazard Mater 2020;397:122721. https://doi.org/10.1016/j.jhazmat.2020.122721.
Belle G, Fossey A, Esterhuizen L, Moodley R. Contamination of groundwater by potential harmful elements from gold mine tailings and the implications to human health: A case study in Welkom and Virginia, Free State Province, South Africa. Groundw Sustain Dev 2021;12:100507. https://doi.org/10.1016/j.gsd.2020.100507.
Departamento Administrativo Nacional de Estadística (DANE) - Colombia. Boletín técnico Producto Interno Bruto (PIB) II trimestre. Bogotá: 2023.
Wolff-Carreño E, Pinzón-Angel JM, Contreras-Moreno R, Bernardy C. Geological setting, mining and reduction of mercury vapor contamination in the gold-silver district of Vetas-Calofornia (Santander, Colombia). Episodes 2005;28:252–6. https://doi.org/10.18814/epiiugs/2005/v28i4/003.
Departamento Administrativo Nacional de Estadística (DANE) - Colombia. Análisis económico y social de la minería en Colombia: retos y oportunidades. Bogotá, Colombia: 2021.
Acueducto Metropolitano de Bucaramanga - AMB. Informe de Gestión - AMB, transparentes como el agua. Bucaramanga, Colombia: 2018.
Romero A, Silvana F. Reuse of mining tailing as raw crude for the elaboration of aggregates of contruction for the making of bricks and tile. Ind Data Investig J 2010;13:75–82.
Méndez D, Guzmán-Martínez F, Acosta M, Collahuazo L, Ibarra D, Lalangui L, et al. Use of Tailings as a Substitute for Sand in Concrete Blocks Production: Gravimetric Mining Wastes as a Case Study. Sustain 2022;14:16285. https://doi.org/10.3390/su142316285.
Pardo N, Penagos G, Correa M, López E. Development of low environmental impact mortars from alkaliny activated silical-aluminum waste from the mining sector. Bol La Soc Esp Ceram y Vidr 2021;62:11–25. https://doi.org/10.1016/j.bsecv.2021.09.003.
Gou M, Zhou L, Then NWY. Utilization of tailings in cement and concrete: A review. Sci Eng Compos Mater 2019;26:449–64. https://doi.org/10.1515/secm-2019-0029.
Franco de Carvalho JM, Fontes WC, Azevedo CF de, Brigolini GJ, Schmidt W, Peixoto RAF. Enhancing the eco-efficiency of concrete using engineered recycled mineral admixtures and recycled aggregates. J Clean Prod 2020;257:120530. https://doi.org/10.1016/j.jclepro.2020.120530.
Ramos-Hernández M, Pérez-Rea M de la L. Characterization of mine tailings in their natural state and stabilized with cement , focused on construction Caracterización de residuos mineros en estado natural y estabilizados con cemento , enfocada a construcción. Ing Investig y Tecnol 2021;22:1–9. https://doi.org/https://doi.org/10.22201/fi.25940732e.2021.22.2.010.
Solismaa S, Torppa A, Kuva J, Heikkilä P, Hyvönen S, Juntunen P, et al. Substitution of cement with granulated blast furnace slag in cemented paste backfill: Evaluation of technical and chemical properties. Minerals 2021;11:1068. https://doi.org/10.3390/min11101068.
Romero-Perdomo F, Carvajalino-Umaña JD, López-González M, Ardila N, González-Curbelo MÁ. The private sector ’ s role in Colombia to achieving the circular economy and the Sustainable Development Goals El rol del sector privado en Colombia para alcanzar la economía circular y los Objetivos de Desarrollo Sostenible. DYNA 2023;90:9–16. https://doi.org/10.15446/dyna.v90n228.107721.
Amaral IBC, Cavalcante LCD, Fabris JD, Prat B V., Reis AB. Use of mining tailings or their sedimentation and flotation fractions in a mixture with soil to produce structural ceramics. Sustain 2021;13:1–17. https://doi.org/10.3390/su13020911.
Garcia-Troncoso N, Baykara H, Cornejo MH, Riofrio A, Tinoco-Hidalgo M, Flores-Rada J. Comparative mechanical properties of conventional concrete mixture and concrete incorporating mining tailings sands. Case Stud Constr Mater 2022;16:e01031. https://doi.org/10.1016/j.cscm.2022.e01031.
Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC. Standard Test Method for Density of Hydraulic Cement - NTC 221. Bogotá, Colombia: 2019.
Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC. Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle - NTC 118. Bogotá, Colombia: 2022.
Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC. Standard Test Method to Determine the Normal Consistency Of Hydraulic Cement - NTC 110. Bogotá, Colombia: 2019.
Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC. Standard Test Method for Sampling Freshly MIixed Concrete - NTC 454. Bogotá, Colombia: 2022.
Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC. Standard Test for Making and Curing of Concrete Test Cpecimens in the Field. Bogotá, Colombia: 2020.
Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens - NTC 673. Bogotá, Colombia: 2021.
Casadiego Quintero E, Gómez Ríos W, R. Monroy E, L. Sánchez Londoño J. Sustainable gold mining: implications of the use of waste as an aggregate for concrete. Inventum 2021;16:71–7. https://doi.org/10.26620/uniminuto.inventum.16.31.2021.71-77.
INGEOMINAS. Geología de la Plancha 110 Pamplona. Bogotá, Colombia: 1977.
Ince C. Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus. J Clean Prod 2019;238:117871. https://doi.org/10.1016/j.jclepro.2019.117871.
Hernandez-Cordoba O, Castro-Herrera F, Paez-Melo M. Mercury Bioaccumulation on Tadpoles of a Gold Mining Zone in Dagua River , Buenaventura , Valle del Cauca , Colombia. Acta Biol Colomb 2013;18:341–8.
Ramírez-Morales D, Rodríguez-Artavia B, Sáenz-Vargas W, Sánchez-Gutiérrez R, Villalobos-González W, Mora-Barrantes JC. Artisanal mining for the extraction of gold through the use of mercury: State of the art of environmental impact in water, air and soil media. Rev Tecnol En Marcha 2019;32:3–11. https://doi.org/10.18845/tm.v32i3.4475.
Tripathi B, Chaudhary S. Performance based evaluation of ISF slag as a substitute of natural sand in concrete. J Clean Prod 2016;112:672–83. https://doi.org/10.1016/j.jclepro.2015.07.120.
Das B, Prakash S, Reddy PSR, Misra VN. An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 2007;50:40–57. https://doi.org/10.1016/j.resconrec.2006.05.008.
Fang L, Jiaqi F, Ran T, Yuanrui Z. Study on strength formation and frost resistance of concrete modified by molybdenum tailings. Case Stud Constr Mater 2022;17:e01280. https://doi.org/10.1016/j.cscm.2022.e01280.
Solís RG, Moreno EI, Arjona E. Resistencia de concreto con agregado de alta absorción y baja relación a/c. Rev ALCONPAT 2012;2:21–8. https://doi.org/10.21041/ra.v2i1.23.
Pyo S, Tafesse M, Kim BJ, Kim HK. Effects of quartz-based mine tailings on characteristics and leaching behavior of ultra-high performance concrete. Constr Build Mater 2018;166:110–7. https://doi.org/10.1016/j.conbuildmat.2018.01.087.
Cao S, Yilmaz E, Song W. Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill. Minerals 2018;8:1–19. https://doi.org/10.3390/min8080352.
Li C, Jiang L. Utilization of limestone powder as an activator for early-age strength improvement of slag concrete. Constr Build Mater 2020;253:119257. https://doi.org/10.1016/j.conbuildmat.2020.119257.
Liu Y, Jiang Y, Li F, Xue B, Cao X. Pore Structure Control of Expanded Dickite and Its Application as a Clay Coating Layer on Cross-Linked Nonwoven Fabrics for Lithium-Ion Batteries. J Electrochem Soc 2019;166:A1082–91. https://doi.org/10.1149/2.0691906jes.
Herrera C. Evaluación de mezclas proyectadas: comportamiento y durabilidad. Universitat Politècnica de Catalunya, 2017.
Argane R, El Adnani M, Benzaazoua M, Bouzahzah H, Khalil A, Hakkou R, et al. Geochemical behavior and environmental risks related to the use of abandoned base-metal tailings as construction material in the upper-Moulouya district, Morocco. Environ Sci Pollut Res 2016;23:598–611. https://doi.org/10.1007/s11356-015-5292-y.
Li L, Lu Y, Ren T, Horton R. Quartz contents derived from particle density measurements improve the accuracy of soil thermal conductivity estimates. Geoderma 2023;436:116526. https://doi.org/10.1016/j.geoderma.2023.116526.
American Concrete Institute. Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2-98). Michigan, USA: 1998.
Shamseldeen Fakhri R, Thanon Dawood E. Limestone powder, calcined clay and slag as quaternary blended cement used for green concrete production. J Build Eng 2023;79:107644. https://doi.org/10.1016/j.jobe.2023.107644.
Instituto Nacional de Vias - INVIAS. Design Guide for Slab Road Pavements. Bogotá, Colombia: 2015.
Chen JJ, Ng PL, Kwan AKH, Li LG. Lowering cement content in mortar by adding superfine zeolite as cement replacement and optimizing mixture proportions. vol. 210. 2019. https://doi.org/10.1016/j.jclepro.2018.11.007.
Taha Y, Benzaazoua M, Edahbi M, Mansori M, Hakkou R. Leaching and geochemical behavior of fired bricks containing coal wastes. J Environ Manage 2018;209:227–35. https://doi.org/10.1016/j.jenvman.2017.12.060.
Derechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.
info:eu-repo/semantics/closedAccess
http://purl.org/coar/access_right/c_14cb
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
mining tailings
cement
concrete
substitution
mechanical properties
Sustainable Utilization of Environmental Liabilities: Incorporating Sands and Sludges from Mining Tailings as Cement Substitutes in 20 MPa Concrete Mix Designs for Tertiary Road Infrastructure
Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
http://purl.org/coar/version/c_71e4c1898caa6e32
Text
info:eu-repo/semantics/bachelorThesis
http://purl.org/redcol/resource_type/TP
info:eu-repo/semantics/submittedVersion
Todas las Audiencias
Publication
institution Universidad EIA
collection d_repositorio.udes.edu.co-DSPACE
title Sustainable Utilization of Environmental Liabilities: Incorporating Sands and Sludges from Mining Tailings as Cement Substitutes in 20 MPa Concrete Mix Designs for Tertiary Road Infrastructure
spellingShingle Sustainable Utilization of Environmental Liabilities: Incorporating Sands and Sludges from Mining Tailings as Cement Substitutes in 20 MPa Concrete Mix Designs for Tertiary Road Infrastructure
Bueno-Gómez, Heidy Thailin
López-Bernier, Yariagna Carolina
Caycedo-Garcia, Maya Sian
Bueno-Gómez, Heidy Thailin
López-Bernier, Yariagna Carolina
Delgado , Jose Antonio
García-Muñoz, Fernando
GAIA
mining tailings
cement
concrete
substitution
mechanical properties
title_short Sustainable Utilization of Environmental Liabilities: Incorporating Sands and Sludges from Mining Tailings as Cement Substitutes in 20 MPa Concrete Mix Designs for Tertiary Road Infrastructure
title_full Sustainable Utilization of Environmental Liabilities: Incorporating Sands and Sludges from Mining Tailings as Cement Substitutes in 20 MPa Concrete Mix Designs for Tertiary Road Infrastructure
title_fullStr Sustainable Utilization of Environmental Liabilities: Incorporating Sands and Sludges from Mining Tailings as Cement Substitutes in 20 MPa Concrete Mix Designs for Tertiary Road Infrastructure
title_full_unstemmed Sustainable Utilization of Environmental Liabilities: Incorporating Sands and Sludges from Mining Tailings as Cement Substitutes in 20 MPa Concrete Mix Designs for Tertiary Road Infrastructure
title_sort sustainable utilization of environmental liabilities: incorporating sands and sludges from mining tailings as cement substitutes in 20 mpa concrete mix designs for tertiary road infrastructure
author Bueno-Gómez, Heidy Thailin
López-Bernier, Yariagna Carolina
Caycedo-Garcia, Maya Sian
Bueno-Gómez, Heidy Thailin
López-Bernier, Yariagna Carolina
Delgado , Jose Antonio
García-Muñoz, Fernando
GAIA
author_facet Bueno-Gómez, Heidy Thailin
López-Bernier, Yariagna Carolina
Caycedo-Garcia, Maya Sian
Bueno-Gómez, Heidy Thailin
López-Bernier, Yariagna Carolina
Delgado , Jose Antonio
García-Muñoz, Fernando
GAIA
building Repositorio digital
topic mining tailings
cement
concrete
substitution
mechanical properties
topic_facet mining tailings
cement
concrete
substitution
mechanical properties
publishDate 2023-11-27
language English
publisher Bucaramanga
physical 14 p
format Trabajo de grado - Pregrado
description This research investigates the viability of incorporating sterile mining materials as partial alternatives to cement and sand in the construction of low-traffic road infrastructures. The study involved conducting chemical, physical, and mineralogical characterizations of the sterile materials through various tests. Analyses using XRF, XRD, and SEM revealed the presence of quartz and other carbonates in the tailings, indicating a chemical similarity with Clinker and suggesting their suitability as viable substitutes. Moreover, the sample demonstrated levels of Hg and CN- below detectable limits, establishing it as non-polluting and endorsing its suitability for use in construction materials. The physical characterization identified an optimal replacement range for cement by sterile materials at 10-20 %. Concrete formulations were developed and assessed with a 20 % substitution, demonstrating mechanical results comparable to those of traditional concrete. These findings affirm the potential of these waste materials to address their improper disposal in water bodies, posing a significant threat to water quality and human health. Consequently, advocating for their sustainable utilization in the construction industry.
url https://repositorio.udes.edu.co/handle/001/9818
url_str_mv https://repositorio.udes.edu.co/handle/001/9818
_version_ 1789502048229654528
score 11.254837