Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad

En este trabajo, se llevó a cabo modificaciones químicas de preparaciones de lipasa B de Candida antarctica (CALB) inmovilizadas en soportes de octil-agarosa, agarosa-Bromuro Cianógeno-(BrCN) y Eupergit C usando diferentes compuestos químicos, por ej. Etilendiamina (EDA), anhídrido succínico (SA) y...

Full description

Saved in:
Bibliographic Details
Institution:Academia Colombiana De Ciencias Exactas Fisicas Y Naturales ACCEFYN
Main Authors: Torres Sáez, Rodrigo G., Academia Colombiana de Ciencias Exactas, Físicas y Naturales
Format: Artículo de revista
Language:Español
Published: Academia Colombiana de Ciencias Exactas, Físicas y Naturales 2014-11-28
Subjects:
Online Access:https://repositorio.accefyn.org.co/handle/001/836
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:repositorio.accefyn.org.co:001-836
recordtype dspace
spelling Torres Sáez, Rodrigo G.
Academia Colombiana de Ciencias Exactas, Físicas y Naturales
2021-10-15T17:13:46Z
2021-10-15T17:13:46Z
2014-11-28
https://repositorio.accefyn.org.co/handle/001/836
https://doi.org/10.18257/raccefyn.163
En este trabajo, se llevó a cabo modificaciones químicas de preparaciones de lipasa B de Candida antarctica (CALB) inmovilizadas en soportes de octil-agarosa, agarosa-Bromuro Cianógeno-(BrCN) y Eupergit C usando diferentes compuestos químicos, por ej. Etilendiamina (EDA), anhídrido succínico (SA) y ácido 2,4,6-trinitrobenceno-sulfónico (TNBS). Estas modificaciones de la superficie de la enzima causó cambios en las propiedades tales como carga neta (punto isoeléctrico o balance de grupos catiónicos/aniónicos) o hidrofobicidad (solubilidad), y demostraron ser métodos prácticos para mejorar el funcionamiento del biocatalizador (estabilidad, actividad y enantioselectividad). Estas alteraciones en las propiedades de la enzima por modificación química podría ser debida a cambios en la estructura de la forma activa de CALB. De esta manera, la modificación química en fase sólida de lipasas inmovilizadas podría convertirse en una herramienta poderosa en el diseño de librerías de lipasas con propiedades muy diferentes.
In this work, it was carried out chemical modifications of Candida antarctica lipase B (CALB) preparations immobilized on octyl-agarose, BrCN-agarose and Eupergit-C supports using different chemical compounds, e.g. ethylenediamine (EDA), succinic anhydride (SA) and 2,4,6-trinitrobenzensulfonic acid (TNBS). These modifications of the enzyme surface caused changes in physical properties such as net charge (isoelectric point or balance of cationic/anionic groups) or hydrophobicity (solubility), and proved to be practical methods to enhance the biocatalyst performance (stability, activity and enantio-selectivity). These alterations in enzyme properties by chemical modification should be due to changes in the structure of the active form of CALB. Therefore, solid phase chemical modification of immobilized lipases may become a powerful tool in the design of lipase libraries with very different properties.
24 páginas
application/pdf
spa
Academia Colombiana de Ciencias Exactas, Físicas y Naturales
Bogotá, Colombia
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
https://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad
Artículo de revista
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
DataPaper
http://purl.org/redcol/resource_type/ART
LIpasa
Candida antarctica B
Enzimas
Modificación química
Lipase
Candida antarctica B
Enzymes
Chemical modification
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales
38
181
204
Suplemento
Estudiantes, Profesores, Comunidad científica
Adlercreutz, P. 2013. Immobilisation and application of lipases in organic media. Chem Soc Rev. 42: 6406-6436.
Ahmed, M.; Kelly, T. & Ghanem, A. 2012. Applications of enzymatic and non-enzymatic methods to access enantiomerically pure compounds using kinetic resolution and racemization. Tetrahedron. 68 (34): 6781-6802.
Anderson, E.; Larsson, K. & Kirk, O. 1998. One Biocatalyst–Many Applications: The Use of Candida antarctica B-Lipase in Organic Synthesis. Biocat Biotrans. 16 (3): 181-204.
Aravindan, R.; Anbumathi, P. & Viruthagiri, T. 2007. Lipase applications in food industry. Indian J Biotechnol. 6: 141-158.
Barbosa, O.; Ariza, C.; Ortiz, C. & Torres, R. 2010. Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B)”. New Biotechnol. 27 (6): 844-850.
Barbosa, O.; Ortiz, C.; Torres, R. & Fernández-Lafuente, R. 2011. Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecific production of atenolol acetate. J Mol Catal B: Enzym. 71: 124-132.
Barbosa, O.; Ruiz, M.; Ortiz, C.; Fernández, M.; Torres, R.; Fernandez-Lafuente, R. 2012. Modulation of the properties of immobilized CALB by chemical modification with 2,3,4- trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on hydrophobic supports. Process Biochem. 47: 867-876.
Barros M, Fleuri L, Macedo G. 2010. Seed lipases: sources, applications and properties: a review”. Brazil J Chem Eng. 27 (1): 15-29.
Baslé, E.; Joubert, N. & Pucheault, M. 2010. Protein chemical modification on endogenous amino acids. Chem Biol. 17: 213-227.
Bastida, A.; Sabuquillo, P.; Armisén, P.; Fernández-Lafuente, R.; Huguet, J. & Guisan, J.M. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng. 58: 486-493.
Berglund, P. 2001. Controlling lipase enantioselectivity for organic synthesis. Biomol Eng. 18: 13-22.
Reis, P.; Holmberg, K.; Watzke, H.; Leser, M. & Miller, R. 2009. Lipases at interfaces: A review. Adv Colloid Interface Sci. 147-148 (C): 237-250.
Rodrigues, R.C:; Ortiz, C., Berenguer-Murcia, A.; Torres, R. & Fernández-Lafuente, R. 2013. Modifying enzyme activity and selectivity by immobilization. RSC. 42, 6290-6307.
Rodrigues, R.C.; Berenguer-Murcia, A. & Fernandez-Lafuente, R. 2011. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv Synth Catal. 353: 2216-2238.
Rodrigues, R.C.; Godoy, C.A.; Volpato, G.; Ayub, M.A.Z.; Fernandez-Lafuente, R. & Guisan, J.M. 2009. Immobilization-stabilization of the lipase from Thermomyces lanuginosus: critical role of chemical amination. Process Biochem. 44: 963-968.
Samuelson, J.C. 2011. Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. Methods Mol Biol. 705: 195-209.
Santaniello, E.; Casati, S. & Ciuffreda, P. 2006. Lipase-Catalyzed Deacylation by Alcoholysis: A Selective, Useful transesterification reaction. Curr Org Chem. 10 (10): 1095-1123.
Sarda, L. & Desnuelle, P. 1958. Actions of pancreatic lipase on esters in emulsions. Biochim Biophys Acta. 30 (3): 513-521.
Secundo, F.; Carrea, G.; Tarabiono, C.; Gatti-Lafranconi, P.; Brocca, S.; Lotti, M.; Jaeger, K.; Puls, M. & Eggert, T. 2006. The lid is a structural and functional determinant of lipase activity and selectivity”. Journal of Molecular Catalysis B: Enzymatic. 39: 166-170.
Schmid, A.; Dordick, J.S.; Hauer, B.; Kiener, A.; Wubbolts, M. & Witholt, B. 2001. Industrial biocatalysis today and tomorrow. Nature. 409: 258-268.
Schmidt, M.; Bö ttcher, D. & Bornscheuer, U.T. 2009. Protein engineering of carboxyl esterases by rational design and directed evolution. Protein Pept Lett. 16: 1162-1171.
Betancor, L.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, C.; Dellamora-Ortiz, G.; et al. 2006. Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobi- lization conditions. Enzyme Microb Technol. 39: 877-382.
Schoemaker, H.E.; Mink, D. & Wubbolts, M.G. 2003. Dispelling the myths - biocatalysis in industrial synthesis. Science. 99: 1694-1697.
Sharma, D.; Sharma, B. & Shukla, A.K. 2011. Biotechnological approach of microbial lipase: A review. Biotechnology. 10: 23-40.
Sheldon, R.A. 2005. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7: 267-278.
Smith, D.W. 1996. Problems of translating heterologous genes in expression systems: the role of tRNA. Biotechnol Prog. 12: 417-422.
Snyder, S.L. & Sobocinski, P.Z. 1975. An improved 2,4,6 trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem. 64: 284-288.
Stonkus, V.; Leite, L.; Lebedev, A.; Lukevics, E.; Ruplis, A.; Stoch, J., et al. 2001. Lipases in racemic resolutions. J Chem Technol Biotechnol. 76: 3-8.
Straathof, A.J.J.; Panke, S. & Schmid, A. 2002. The production of fine chemicals by bio-transformations. Curr Opin Biotechnol. 13: 548–56.
Svendsen, A. 2000. Lipase protein engineering. Biochim Biophys Acta. 2: 223-238.
Torchilin, V.P.; Maksimenko, A.V.; Smirnov, V.N.; Berezin, I.V.; Klibanov, A.M. & Martinek, K. 1979 The principles of enzyme stabilization IV. Modification of ‘key’ functional groups in the tertiary structure of proteins. Biochem Biophys Acta. 567: 1-11.
Tyagi, R. & Gupta, M.N. 1998. Chemical modification and chemical cross-linking for protein/enzyme stabilization. Biochemistry (Moscow). 63: 334-344.
Bradford, M.M. 1976. Rapid and sensitive method for the quan-titation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Ueji, S.; Ueda, A.; Tanaka, H.; Watanabe, K.; Okamoto, T. & Ebara, Y. 2003. Chemical modification of lipases with various hydrophobic groups improves their enantio-selectivity in hydrolytic reactions. Biotechnol Lett. 25: 83-87.
Ulbrich-Hofmann, R.; Arnold, U. & Mansfeld, J. 1997. The concept of the unfolding region for approaching the mechanisms of enzyme stabilization. J Mol Catal B: Enzym. 7: 125-131.
Uppenberg, J.; Hansen, M.; Patkar, S. & Jones A. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure. 2: 34-40.
Vallin, M.; Syrén, P-O. & Hult, K. 2010. Mutant lipase-catalyzed kinetic resolution of bulky phenyl alkyl sec-alcohols: a thermodynamic analysis of enantioselectivity. Chembiochem. 11: 411-416.
Van Loo, B.; Kingma, J.; Heyman, G.; Wittenaar, A.; Lutje Spelberg, J.H.; Sonke, T.; et al. 2009. Improved enantio-selective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutated nucleophile-flanking residue. Enzyme Microb Technol. 44: 145-153.
Van Rantwijk, F.; Lau, R.M. & Sheldon, R.A. 2003. Biocatalytic transformations in ionic liquids. Trends Biotechnol. 21: 131-138.
Verger, R. 1997. Interfacial activation of lipases: facts and artifacts”. Trends Biotechnol. 15 (1): 32-38.
Wang, J.; Do, D.; Chuah, G. & Jaenicke, S. 2013. Core-Shell Composite as the Racemization Catalyst in the Dynamic Kinetic Resolution of Secondary Alcohols. Chem Cat Chem. 5 (1): 247-254.
Wong, S.S. & Wong, L-JC. 1992. Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme Microb Technol. 14: 866-874.
Woodley, J.M. 2008. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol. 26: 321-327
Brady, L.; Brzozowski, A.; Derewenda, Z.; Dodson, E. & Dodson, G. 1990. A serine protease triad forms the catalytic center of a triacylglycerol lipase”. Nature. 343: 767-770.
Wynn, R. & Richards, F.M. 1993. Unnatural amino acid packing mutants of Escherichia coli thioredoxin produced by combined mutagenesis/chemical modification techniques. Protein Sci. 2: 395-403.
Xiong, J.; Huang, Y. & Zhang, H. 2012. Lipase-catalyzed transesterification synthesis of citronellyl acetate in a solvent-free system and its reaction kinetics. Eur Food Res Technol. 235 (5): 907-914.
Yamashita, H.; Nakatani, H. & Tonomura, B. 1993. Change of substrate specificity by chemical modification of lysine residues of porcine pancreatic alpha-amylase. Biochim Biophys Acta. 1202: 129-134.
Yu, X-W.; Tang, N-J; Xiao, R. & Xu, Y. 2012. Engineering a Disulfide Bond in the Lid Hinge Region of Rhizopus chinensis Lipase: Increased Thermostability and Altered Acyl Chain Length Specificity. Plos One, 7 (10): e46388.
Zhang, K.; Diehl, M.R. & Tirrell, D.A. 2005. Artificial polypeptide scaffold for protein immobilization. J Am Chem Soc. 127: 10136-10137.
Brzozowski, A.; Derewenda, Z.; Derewenda, U.; Dodson, G. & Lawson, D.M. 1991. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 351: 491-494.
Cabrera, Z.; Fernandez-Lorente, G.; Fernandez-Lafuente, R.; Palomo, J.M. & Guisan, J.M. 2009. Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem. 44: 226-231.
Cantone, S.; Hanefeld, U. & Basso, A. 2007. Biocatalysis in non-conventional media-ionic liquids, supercritical fluids and the gas phase. Green Chem. 9: 954-971.
Carraway, K.L. & Koshland Jr, D.E. 1968. Reaction of tyrosine residues in proteins with carbodiimide reagents. Biochem Biophys Acta 160: 272–4.
Carraway, K.L. & Koshland Jr DE. 1972. Carbodiimide modification of proteins. Methods Enzymol. 25:616–23.
Carraway, K.L.; Spoerl, P. & Koshland Jr, D.E. 1969. Carboxyl group modification in chymotrypsin and chymotrypsinogen. J Mol Biol. 42: 133-137.
Casas-Godoy, L.; Duquesne, S.; Bordes, F.; Sandoval, G. & Marty, A. 2012. Lipases: An overview. Methods Mol Biol. 861: 3-30.
Chalker, J.M.; Bernardes, G.J.L.; Lin, Y.A. & Davis, B.G. 2009. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J. 4: 630-640.
Chen, C.; Fujimoto, Y.; Girdaukas, G. & Sih, C. 1982. General Aspects and Optimization of Enantioselective Biocatalysis. In: Organic Solvents: The Use of Lipases. J Am Chem Soc. 104: 7294-7299.
Chiang, C-J; Chern, J-T; Wang, J-Y& Chao, Y-P. 2008. Facile immobilization of evolved Agrobacterium radiobacter carbamoylase with high thermal and oxidative stability. J Agric Food Chem. 56: 6348-6354.
Dash, C.; Phadtare, S.; Deshpande, V. & Rao, M. 2001. Structural and mechanistic insight into the inhibition of aspartic proteases by a slow-tight binding inhibitor from an extremophilic Bacillus sp.: correlation of the kinetic parameters with the inhibitor induced conformational changes. Biochemistry. 40: 11525–32.
Davis, B.G.; Shang, X.; DeSantis, G.; Bott, R.R. & Jones, J.B. 1999. The controlled introduction of multiple negative charge at single amino acid sites in subtilisin Bacillus lentus. Bioorg Med Chem. 7: 2293-2301.
Davis, B.G. 2003. Chemical modification of biocatalysts. Curr Opin Biotechnol.14: 379-386.
De Santis, G. & Jones, J. 1999. Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol. 10: 324-330.
Desnuelle P. 1972. The Enzymes. 3rd Editorial Boyer, Academic Press, NY, 575.
Derewenda, U.; Brzozowski, A.; Lawson, D. & Derewenda, Z.S. 1992. Catalysis at the interface: the anatomy of conformational change in a triglyceride lipase. Biochemistry. 31: 1532-1541.
Díaz-Rodríguez, A. & Davis, B.G. 2011. Chemical modification in the creation of novel biocatalysts. Curr Opin Chem Biol. 15 (2): 211-219.
Durand, J.; Teuma, E. & Gómez, M. 2007. Ionic liquids as a medium for enantioselective catalysis. C R Chim. 10: 152-177.
Ericsson, J.; Kasrayan, A.; Johansson, P.; Bergfors, T. & Mowbray, L. 2008. X-ray Structure of Candida antarctica Lipase A Shows a Novel Lid Structure and a Likely Mode of Interfacial Activation. J Mol Biol. 376: 109-119.
Fernandez-Lafuente, R.; Rosell, C.M.; Alvaro, G. & Guisan, J.M. 1992. Additional stabilization of penicillin G acylase-agarose derivatives by controlled chemical modification with formaldehyde. Enzyme Microb Technol. 14: 489-495.
Fernandez-Lafuente, R.; Rosell, C.M.; Rodriguez, V. & Guisan, J.M. 1995. Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme Microb Technol. 17: 517–23.
Fernandez-Lafuente, R. 2009. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Technol. 45: 405-418.
Fernández-Lorente, G.; Palomo, J.M.; Cabrera, Z.; Guisán,J.M. &Fernández-Lafuente, R. 2007. Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzyme Microb Technol 41: 565-569.
Fernandez-Lorente, G.; Godoy, C.A.; Mendes, A.A.; Lopez-Gallego, F.; Grazu, V.; de las Rivas, B., et al. 2008. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Bio-macromolecules. 9: 2553-2561.
Fernandez-Lorente, G.; Godoy, C.A.; Mendes, A.A.; Lopez-Gallego, F.; Grazu, V.; de las Rivas, B., et al. 2008. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Bio-macromolecules. 9: 2553-2561.
Ferrer, M.; Golyshina, O.; Beloqui, A. & Golyshin, P.N. 2007. Mining enzymes from extremes environments. 10 (3): 207-214.
Fjerbaek, L.; Christensen, K.V. & Norddahl, B. 2009. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng. 102: 1298-1315.
Forde, J.; Vakurov, A.; Gibson, T.D.; Millner, P.; Whelehan, M.; Marison, I.W.; et al. 2010a. Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. J Mol Catal B: Enzym. 66: 203-209.
Forde, J.; Tully, E.; Vakurov, A.; Gibson, T.D.; Millner, P. & Ó’Fágáin, C. 2010b. Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila. Enzyme Microb Technol. 46: 430-437.
Galvis, M.; Barbosa, O.; Ruiz, M.; Cruz, J.; Torres, R.; Ortiz, C. & Fernandez-Lafuente, R. 2012. Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Proc Biochem. 47: 2373–2378.
Gandhi, N.N. 1997. Applications of lipase. J Am Oil Chem Soc. 74: 621-634.
Gotor-Fernández, V.; Brieva, R. & Gotor, V. 2006a. Lipases: Useful biocatalysts for the preparation of pharmaceuticals. J Mol Catal B: Enz. 40: 111-120.
Gotor-Fernández, V.; Busto, E. & Gotor, V. 2006b. Candida antarctica lipase B: an ideal bio- catalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348: 797–812.
Grochulski, P.; Li, Y.; Schragm, J.; Boutthilier, F.; Smith, P.; Harrinson, D.; Rubin, B. & Cyler, M. 1993. Insights into interfacial activation from an open structure of Candida rugosa lipase”. J Biol Chem. 268: 12843–12847.
Gron, H.; Bech, L.M.; Branner, S. & Breddam, K. 1990. A highly active and oxidation- resistant subtilisin-like enzyme produced by a combination of site-directed mutagenesis and chemical modification. Eur J Biochem. 194: 897-901.
Gupta, M.N. & Roy, I. 2004. Enzymes in organic media: forms, functions and applications. Eur J Biochem. 271: 2575-2583.
Hacking, M.; Van Rantwijk, F. & Sheldon, R. 2000. Lipase catalysed synthesis of diacyl hydrazines: An indirect method for kinetic resolution of chiral acids. J Mol Catal B: Enz. 9 (4-6): 183-191.
Hernandez, K. & Fernández-Lafuente, R. 2011. Control of protein immobilization. Coupling immobilization and site directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol. 48: 107-122.
Hernandez, K.; Garcia-Verdugo, E.; Porcar, R. & Fernandez-Lafuente, R. 2011. Hydrolysis of triacetin catalyzed by immobilized lipases: Effect of the immobilization protocol and experimental conditions on diacetin yield”. Enz Microb Technol. 48 (6-7): 510-517.
Husain, S.; Jafri, F. & Saleemuddin, M. 1996. Effects of chemical modification on the stability of invertase before and after immobilization. Enzyme Microb Technol. 18: 275–80.
Itoh, T. 2009. Recent development of enzymatic reaction systems using ionic liquids. J Synth Org Chem. 67: 143-155.
Iwasaki, Y. & Yamane, T. 2000. Enzymatic synthesis of structured lipids. J Mol Catal B: Enzyme. 10: 129-140.
Jä ckel, C.; Kast, P. & Hilvert, D. 2008. Protein design by directed evolution. Ann Rev Biophys. 37: 153-173.
Jaeger, K.E. & Reetz, M.T. 1998. Microbial lipases from versatile tools for biotechnology. Trends Biotechnol. 16: 396-403.
Jagtap, S. & Rao, M. 2006. Conformation and microenvironment of the active site of a low molecular weight 1,4-beta-D-glucan glucanohydrolase from an alkalothermophilic Thermomonospora sp.: involvement of lysine and cysteine residues. Biochem Biophys Res Commun. 347: 428–32.
Juhl, P.; Doderer, K.; Hollmann, F.; Thum, O. & Pleiss, J. 2010. Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J Biotechnol. 150 (4): 474-480.
Khajeh, K.; Naderi-Manesh, H.; Ranjbar, B.; Moosavi-Movahedi, A.A. & Nemat- Gorgani, M. 2001. Chemical modification of lysine residues in Bacillus alpha-amylases: effect on activity and stability. Enzyme Microb Technol. 28: 543-549.
Kirk, O. & Christensen, M. 2002. Lipases from Candida antarctica: Unique Biocatalysts from a Unique Origin”. Organic Process Research and Development. 6: 446-451.
Kohn, J. & Wilchek, M. 1982. A new approach (cyano-transfer) for cyanogen bro- mide activation of sepharose at neutral pH, which yields activated resins, free of interfering nitrogen derivatives. Biochem Biophys Res Commun. 107: 878-884.
Kolodziejska, R.; Karczmarska-Wódzka, A.; Wolan, A. & Dramiński, M. 2012. Candida antarctica lipase B catalyzed enantioselective acylation of pyrimidine acyclonucleoside”. Biocat Biotrans. 30 (4): 426-430.
Kotormán, M.; Cseri, A.; Laczkó, I. & Simon, LM. 2009. Stabilization of α-chymotrypsin in aqueous organic solvents by chemical modification with organic acid anhydrides. J Mol Catal B: Enzym. 59 (1–3): 153-157.
Kurtovic, S. & Mannervik, B. 2009. Identification of emerging quasi-species in directed enzyme evolution. Biochemistry. 48: 9330-9339.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.
Mansfeld, J.; Vriend, G.; Van Den Burg, B.; Eijsink, V.G.H. & Ulbrich-Hofmann, R. 1999. Probing the unfolding region in a thermolysin-like protease by site-specific immobilization. Biochemistry. 38: 8240-8245.
March, S.C.; Parikh, I. & Cuatrecasas, P. 1974. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 60: 149-152.
Marciello, M.; Filice, M. & Palomo, J.M. 2012. Different strategies to enhance the activity of lipase catalysts. Cat Sci Technol. 2: 1531-1543
Martinelle, M.; Holmquist, M. & Hult, K. 1995. On the interfacial activation of Candida Antarctica lipase A and B as compared with Humicola lanuginose lipase. Biochim Biophys Acta. 1258: 272-276.
Mateo, C.; Fernández-Lorente, G.; Abian, O.; Fernández-Lafuente, R. & Guisán, J.M. 2000. Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage. Biomacromolecules. 1: 739-745.
Mateo, C.; Abian, O.; Bernedo, M.; Cuenca, E.; Fuentes, M.; Fernandez-Lorente, G.; et al. 2005. Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Technol. 37: 456-462.
Mateo, C.; Palomo, J.M.; Fernández-Lorente, G.; Guisan, J.M. & Fernandez-Lafuente, R. 2007a. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 40: 1451-1463.
Mateo, C.; Grazú, V.; Pessela, B.; Montes, T.; Palomo, J.M.; Torres, R.; López-Gallego, F.; Fernández-Lafuente, R. & Guisán, J.M. 2007b. Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc Trans. 35: 1593-1601.
Matsumoto, K.; Davis, B.G. & Jones, J.B. 2002. Chemically modified “polar patch” mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: designing combinatorial biocatalysts. Chem Eur J. 8: 4129-4137.
Mendes, A.A.; De Castro, H.F.; De, S.; Rodrigues, D.; Adriano, W.S.; Tardioli, P.W., et al. 2011. Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts. J Ind Microbiol Biotechnol. 38: 1055-1066.
Meyer, H-P. 2006. Chemocatalysis biocatalysis (biotransformation): some thoughts of a chemist and of a biotechnologist. Org Process Res Dev. 10: 572-580.
Montes, T.; Grazú, V.; Lopez-Gallego, F.; Hermoso, J.; Guisán, J.M. & Fernandez-Lafuente R. 2006. Chemical modifica-tion of protein surfaces to improve their reversible enzyme immobilization on ionic exchangers”. Biomacromolecules. 11: 3052–3058.
Nobel, M.; Cleasby, A.; Johnson, L.; Egmond, M. & Frenken, G. 1993. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 331: 1265–1269.
O`Fágáin, C. 2003. Enzyme stabilization- recent experimental progress. Enzyme Microb Technol. 33: 137-149.
Ortega, S.; Máximo, M.; Montiel, M.; Murcia, M. & Bastida, J. 2012. Esterification of polyglycerol with polycondensed ricinoleic acid catalysed by immobilised Rhizopus oryzae lipase. Bioprocess Biosyst Eng. 36: 1291-1302.
Ortiz-Soto, M.E.; Rudiño-Piñera, E.; Rodriguez-Alegria, M.E. & Munguia, A.L. 2009. Evaluation of cross-linked aggregates from purified Bacillus subtilis levansucrase mutants for transfructosylation reactions. BMC Biotechnol. 9: 68.
Overbeeke, P.; Govardhan, C.; Khalaf, N.; Jongejan, J. & Heijnen, J. 2000. Influence of lid conformation on lipase enantioselectivity. J Mol Catal B: Enzym. 10 (4): 385-393.
Palomo, J.M.; Fernández-Lorente, G.; Guisán, J.M. & Fernández-Lafuente, R. 2007. Modulation of immobilized lipase enantioselectivity via chemical amination. Adv Synth Catal. 349: 1119–27.
Palomo, J.M. 2010. Diels-Alder cycloaddition in protein chemistry. Eur J Org Chem. 33: 6303-6314.
Palomo, J.M. & Guisan, J.M. 2012. Differnt strategies for hyperactivation of lipase biocastalysts. Methods Mol Biol. 861: 329-341.
Pandey, A.; Benjamin, S.; Soccol, C.R.; Nigam, P.; Krieger, N. & Soccol, V.T. 1999. The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem. 29: 119-131.
Pedroche, J.; del Mar Yust, M.; Mateo, C.; Fernández-Lafuente, R.; Girón-Calle, J.; Alaiz, M.; et al. 2007. Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: correlation between enzyme–support link-ages and thermal stability. Enzyme Microb Technol. 40: 1160-1166.
Peterson, A.E.; Adlercrutz, P. & Mattiason, B. 2007. A water activity control system for enzymatic reactions in organic media. Biotechnol Bioeng. 97: 235-241.
Polizzi, K.M.; Bommarius, A.S.; Broering, J.M. & Chaparro-Riggers, J.F. 2007. Stability of bio-catalysts. Curr Opin Chem Biol. 11: 220-5.
Pollard, D.J. & Woodley, J.M. 2007. Biocatalysis for pharma-ceutical intermediates: the future is now. Trends Biotechnol. 25: 66-73.
Prechter, A.; Gröger, H. & Heinrich, M. 2012. Synthesis of (S)-(+)-cericlamine through lipase-catalyzed aminolysis of azo acetates. Org Biomol Chem. 17 (10): 3384-3387.
Quinn, D.M.; Shirai, K.; Jackson, R.L. & Harmony, J.A. 1982. Lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl esters. Inhibition by apoliporotein C-II. Bio-chemistry. 21 (26): 6872-6879.
Rao, M.N.; Kembhavi, A.A. & Pant, A. 1996. Role of lysine, tryptophan and calcium in the beta-elimination activity of a low-molecular-mass pectate lyase from Fusarium moniliformae. Biochem J. 319: 159-164.
Ray, J.; Nagy, Z.; Smith K.; Bhaggan, K. & Stapley, A. 2013. Kinetic study of the acidolysis of high oleic sunflower oil with stearic–palmitic acid mixtures catalysed by immo-bilised Rhizopus oryzae lipase. Biochem Eng J. 73: 17-28.
Reetz, M.T. 2002. Lipases as practical biocatalysts. Curr Opin Chem Biol 6: 145-150.
Reetz, M.T. 2007. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes. Ernst Schering Found Symp Proc 2007: 321-340.
Rehm, S.; Trodler, P. & Pleiss, J. 2011. Solvent-induced lid opening in lipases: A molecular dynamics study. Protein Science. 19 (11): 2122-2130.
Reis, P.; Miller, P.; Kragel, K. & Leser, M, et al. 2008. Lipases at Interfaces: Unique Interfacial Properties as Globular Proteins. Langmuir. 24: 6812-6819.
http://purl.org/coar/access_right/c_abf2
http://purl.org/coar/version/c_970fb48d4fbd8a85
institution Academia Colombiana De Ciencias Exactas Fisicas Y Naturales ACCEFYN
collection d_repositorio.accefyn.org.co-DSPACE
title Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad
spellingShingle Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad
Torres Sáez, Rodrigo G.
Torres Sáez, Rodrigo G.
Academia Colombiana de Ciencias Exactas, Físicas y Naturales
LIpasa
Candida antarctica B
Enzimas
Modificación química
Lipase
Candida antarctica B
Enzymes
Chemical modification
title_short Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad
title_full Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad
title_fullStr Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad
title_full_unstemmed Suplemento Modificación Química en Fase Sólida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad
title_sort suplemento modificación química en fase sólida de lipasa b de candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad
author Torres Sáez, Rodrigo G.
Torres Sáez, Rodrigo G.
Academia Colombiana de Ciencias Exactas, Físicas y Naturales
author_facet Torres Sáez, Rodrigo G.
Torres Sáez, Rodrigo G.
Academia Colombiana de Ciencias Exactas, Físicas y Naturales
building Repositorio digital
topic LIpasa
Candida antarctica B
Enzimas
Modificación química
Lipase
Candida antarctica B
Enzymes
Chemical modification
topic_facet LIpasa
Candida antarctica B
Enzimas
Modificación química
Lipase
Candida antarctica B
Enzymes
Chemical modification
publishDate 2014-11-28
language Español
publisher Academia Colombiana de Ciencias Exactas, Físicas y Naturales
physical 24 páginas
format Artículo de revista
description En este trabajo, se llevó a cabo modificaciones químicas de preparaciones de lipasa B de Candida antarctica (CALB) inmovilizadas en soportes de octil-agarosa, agarosa-Bromuro Cianógeno-(BrCN) y Eupergit C usando diferentes compuestos químicos, por ej. Etilendiamina (EDA), anhídrido succínico (SA) y ácido 2,4,6-trinitrobenceno-sulfónico (TNBS). Estas modificaciones de la superficie de la enzima causó cambios en las propiedades tales como carga neta (punto isoeléctrico o balance de grupos catiónicos/aniónicos) o hidrofobicidad (solubilidad), y demostraron ser métodos prácticos para mejorar el funcionamiento del biocatalizador (estabilidad, actividad y enantioselectividad). Estas alteraciones en las propiedades de la enzima por modificación química podría ser debida a cambios en la estructura de la forma activa de CALB. De esta manera, la modificación química en fase sólida de lipasas inmovilizadas podría convertirse en una herramienta poderosa en el diseño de librerías de lipasas con propiedades muy diferentes. In this work, it was carried out chemical modifications of Candida antarctica lipase B (CALB) preparations immobilized on octyl-agarose, BrCN-agarose and Eupergit-C supports using different chemical compounds, e.g. ethylenediamine (EDA), succinic anhydride (SA) and 2,4,6-trinitrobenzensulfonic acid (TNBS). These modifications of the enzyme surface caused changes in physical properties such as net charge (isoelectric point or balance of cationic/anionic groups) or hydrophobicity (solubility), and proved to be practical methods to enhance the biocatalyst performance (stability, activity and enantio-selectivity). These alterations in enzyme properties by chemical modification should be due to changes in the structure of the active form of CALB. Therefore, solid phase chemical modification of immobilized lipases may become a powerful tool in the design of lipase libraries with very different properties.
url https://repositorio.accefyn.org.co/handle/001/836
url_str_mv https://repositorio.accefyn.org.co/handle/001/836
_version_ 1723075424903233536
score 11.341148