Mechanical Performance of Concrete with Waste from Oil Industry

In this paper, the mechanical properties of concrete with an added residue of the petrochemical industry (at levels of 10, 20, 30%), called catalytic cracking catalyst residue (FCC), are evaluated. The mechanical properties evaluated include compressive strength, modulus of elasticity, flexural stre...

Full description

Saved in:
Bibliographic Details
Institution:Escuela Colombiana de Ingeniería
Main Authors: Torres Castellanos, Nancy, Torres Agredo, Janneth, Mejía de Gutierrez, Ruby, Estructuras y Materiales
Format: Artículo de revista
Language:English
Published: ACI American Concrete Institute 2016
Subjects:
Online Access:https://repositorio.escuelaing.edu.co/handle/001/1529
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:repositorio.escuelaing.edu.co:001-1529
recordtype dspace
spelling Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
Estructuras y Materiales
2021-05-31T14:41:25Z
2021-10-01T17:46:32Z
2021-05-31T14:41:25Z
2021-10-01T17:46:32Z
2016
0889-325X
https://repositorio.escuelaing.edu.co/handle/001/1529
In this paper, the mechanical properties of concrete with an added residue of the petrochemical industry (at levels of 10, 20, 30%), called catalytic cracking catalyst residue (FCC), are evaluated. The mechanical properties evaluated include compressive strength, modulus of elasticity, flexural strength, and ultrasonic pulse velocity. Two reference materials, portland cement concrete without addition and added with 20% of metakaolin (MK), were used. These tests were performed up to 360 days of curing age. Based on the results obtained, correlations were established between the different properties evaluated. The best mechanical performance was obtained with 10% FCC as a cement replacement.
En este trabajo se evalúan las propiedades mecánicas del hormigón con un residuo añadido de la industria petroquímica (en niveles del 10, 20 y 30%), denominado residuo de catalizador de craqueo catalítico (FCC). Las propiedades mecánicas evaluadas incluyen la resistencia a la compresión, el módulo de elasticidad, la resistencia a la flexión y la velocidad de los impulsos ultrasónicos. Se utilizaron dos materiales de referencia, hormigón de cemento portland sin adición y adicionado con un 20% de metacaolín (MK). Estos ensayos se realizaron hasta los 360 días de edad de curado. A partir de los resultados obtenidos, se establecieron correlaciones entre las diferentes propiedades evaluadas. Las mejores prestaciones mecánicas se obtuvieron con un 10% de FCC como sustituto del cemento.
8 páginas
application/pdf
eng
ACI American Concrete Institute
United State.
https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=51689375
Mechanical Performance of Concrete with Waste from Oil Industry
Artículo de revista
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_2df8fbb1
Text
info:eu-repo/semantics/article
http://purl.org/redcol/resource_type/ART
ACI Materials Journal, V. 113, No. 5, September-October 2016.
659
5
653
113
N/A
ACI Materials Journal
Gartner, E., “Industrially Interesting Approaches to Low CO2 Cements,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1489- 1498. doi: 10.1016/j.cemconres.2004.01.021
Hendriks, C. A.; Worrell, E.; de Jager, D.; Blok, K.; and Riemer, P., “Emission Reduction of Greenhouse Gases from the Cement Industry,” Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, IEA GHG R&D Programme, Interlaken, Austria, 1998.
Marafi, M., and Stanislaus, A., “Spent Catalyst Waste Management: A Review: Part I—Developments in Hydroprocessing Catalyst Waste Reduction and Use,” Resources, Conservation and Recycling, V. 52, No. 6, 2008, pp. 859-873. doi: 10.1016/j.resconrec.2008.02.004
Pacewska, B.; Wilińska, I.; Bukowska, M.; and Nocuń-Wczelik, W., “Effect of Waste Aluminosilicate Material on Cement Hydration and Properties of Cement Mortars,” Cement and Concrete Research, V. 32, No. 11, 2002, pp. 1823-1830. doi: 10.1016/S0008-8846(02)00873-6
Pacewska, B.; Wilińska, I.; Bukowska, M.; Blonkowski, G.; and Nocuń-Wczelik, W., “An Attempt to Improve the Pozzolanic Activity of Waste Aluminosilicate Catalyst,” Thermal Analysis and Calorimetry, V. 77, No. 1, 2004, pp. 133-142. doi: 10.1023/B:JTAN.0000033196.30760.af
Antiohos, S. K.; Chouliara, E.; and Tsimas, S., “Re-Use of Spent Catalyst from Oil-Cracking Refineries as Supplementary Cementing Material,” Journal China Particuology, V. 4, No. 2, 2006, pp. 73-76. doi: 10.1016/ S1672-2515(07)60238-3
Payá, J.; Monzó, J.; and Borrachero, M., “Fluid Catalytic Cracking Catalyst Residue (FC3R): An Excellent Mineral By-Product for Improving Early Strength Development of Cement Mixtures,” Cement and Concrete Research, V. 29, No. 11, 1999, pp. 1773-1779. doi: 10.1016/ S0008-8846(99)00164-7
Payá, J.; Monzó, J.; and Borrachero, M., “Physical, Chemical and Mechanical Properties of Fluid Catalytic Cracking Catalyst Residue (FC3R) Blended Cements,” Cement and Concrete Research, V. 31, No. 1, 2001, pp. 57-61. doi: 10.1016/S0008-8846(00)00432-4
Payá, J.; Monzó, J.; Borrachero, M. V.; and Velázquez, S., “Evaluation of the Pozzolanic Activity of Fluid Catalytic Cracking Catalyst Residue (FC3R). Thermogravimetric Analysis Studies on FC3R-Portland Cement Pastes,” Cement and Concrete Research, V. 33, No. 4, 2003, pp. 603-609. doi: 10.1016/S0008-8846(02)01026-8
Trochez, J.; Torres, J.; and Mejía de Gutiérrez, R., “Estudio de la Hidratación de Pastas de Cemento Adicionadas con Catalizador de Craqueo Catalítico Usado (FCC) de una Refinería Colombiana,” Revista Facultad de Ingeniería Universidad de Antioquia, V. 55, 2010, pp. 26-34
Izquierdo, S.; Díaz, J.; Mejía, R.; and Torres, J., “Cemento Adicionado con un Residuo del Proceso de Craqueo Catalítico (FCC): Hidratación y Microestructura,” Revista Ingeniería de Construcción RIC, V. 28, No. 2, 2013, pp. 141-154. doi: 10.4067/S0718-50732013000200003
Su, N.; Fang, H.; Chen, Z.; and Liu, F., “Reuse of Waste Catalysts from Petrochemical Industries for Cement Substitution,” Cement and Concrete Research, V. 30, No. 11, 2000, pp. 1773-1783. doi: 10.1016/ S0008-8846(00)00401-4
Su, N.; Chen, Z.; and Fang, H., “Reuse of Spent Catalyst as Fine Aggregate in Cement Mortar,” Cement and Concrete Composites, V. 23, No. 1, 2001, pp. 111-118. doi: 10.1016/S0958-9465(00)00074-3
Borrachero, M. V.; Monzó, J.; Payá, J.; Peris-Mora, E.; Vunda, C.; Velázquez, S.; and Soriano, L., “El Catalizador Gastado de Craqueo Catalítico Adicionado al Cemento Portland: Las Primeras 48 Horas de Curado y la Evolución de la Resistencia Mecánica,” VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia, Spain, 2002, pp. 579-589.
Pacewska, B.; Bukowska, M.; Wilińska, I.; and Swat, M., “Modification of Properties of Concrete by a New Pozzolan. A Waste Catalyst from the Catalytic Process in a Fluidized Bed,” Cement and Concrete Research, V. 32, No. 1, 2002, pp. 145-152. doi: 10.1016/S0008-8846(01)00646-9
Neves, R.; Vicente, C.; Castela, A.; and Montemor, M. F., “Durability Performance of Concrete Incorporating Spent Fluid Cracking Catalyst,” Cement and Concrete Composites, V. 55, 2015, pp. 308-314. doi: 10.1016/j. cemconcomp.2014.09.018
Torres Castellanos, N.; Izquierdo García, S.; Torres Agredo, J.; and Mejía de Gutiérrez, R., “Resistance of Blended Concrete Containing an Industrial Petrochemical Residue to Chloride Ion Penetration and Carbonation,” Ingeniería e Investigación, V. 34, No. 1, 2014, pp. 11-16. doi: 10.15446/ing.investig.v34n1.38730
Torres, N.; Torres, J.; and Mejía de Gutiérrez, R., “Performance under Sulfate Attack of Concrete Additioned with Fluid Catalytic Cracking Catalyst Residue (FCC) and Metakaolin (MK),” Ingeniería e Investigación, V. 33, No. 1, 2013, pp. 18-22.
ASTM C618-12a, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2012, 12 pp.
Torres, J.; Mejía de Gutiérrez, R.; Castelló., R.; and Vizcayno, C., “Procesos de Hidratación de Pastas OPC Adicionadas con Caolín Tratado Térmicamente,” Revista Facultad de Ingeniería Universidad de Antioquia, V. 43, 2008, pp. 77-85.
NSR-10, “Colombian Earthquake Resistant Building Code,” Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá, Colombia, 2010, 130 pp. (in Spanish)
ASTM C469-94, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” ASTM International, West Conshohocken, PA, 1994, 4 pp
ASTM C39/C39M-99, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 1999, 5 pp.
ASTM C78/C78M-02, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading),”ASTM International, West Conshohocken, PA, 2002, 4 pp.
ASTM C597-09, “Standard Test Method for Pulse Velocity Through Concrete,”ASTM International, West Conshohocken, PA, 2009, 4 pp
Soriano, M. L., “Nuevas Aportaciones en el Desarrollo de Materiales Cementantes con Residuo de Catalizador de Craqueo Catalítico (FCC),” PhD thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2008.
Nassif, H.; Najm, H.; and Suksawang, N., “Effect of Pozzolanic Materials and Curing Methods on the Elastic Modulus of HPC,” Cement and Concrete Composites, V. 27, No. 6, 2005, pp. 661-670. doi: 10.1016/j. cemconcomp.2004.12.005
Qian, X., and Li, Z., “The Relationships between Stress and Strain for High-Performance Concrete with Metakaolin,” Cement and Concrete Research, V. 31, No. 11, 2001, pp. 1607-1611. doi: 10.1016/ S0008-8846(01)00612-3
Mehta, K., and Monteiro, P., Concrete, Microstructure, Properties, and Materials, McGraw-Hill, New York, 2006, 647 pp
Popovics, S.; Rose, J. L.; and Popovics, J. S., “The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Research, V. 20, No. 2, 1990, pp. 259-270. doi: 10.1016/0008-8846(90)90079-D
Popovics, S., Strength and Related Properties of Concrete: A Quantitative Approach, John Wiley & Sons, Inc., New York, 1998.
Yang, H.; Lin, Y.; Hsiao, C.; and Liu, J.-Y., “Evaluating Residual Compressive Strength of Concrete at Elevated Temperatures Using Ultrasonic Pulse Velocity,” Fire Safety Journal, V. 44, No. 1, 2009, pp. 121-130. doi: 10.1016/j.firesaf.2008.05.003
Shariq, M.; Prasad, J.; and Masood, A., “Studies in Ultrasonic Pulse Velocity of Concrete Containing GGBFS,” Construction and Building Materials, V. 40, 2013, pp. 944-950. doi: 10.1016/j.conbuildmat.2012.11.070
Parande, A. K.; Babu, B. R.; Karthik, M. A.; Kumaar, K. K. D.; and Palaniswamy, N., “Study on Strength and Corrosion Performance for Steel Embedded in Metakaolin Blended Concrete/Mortar,” Construction and Building Materials, V. 22, No. 3, 2008, pp. 127-134. doi: 10.1016/j. conbuildmat.2006.10.003
Trtnik, G.; Kavcic, F.; and Turk, G., “Prediction of Concrete Strength Using Ultrasonic Pulse Velocity and Artificial Neural Networks,” Ultrasonics, V. 49, No. 1, 2009, pp. 53-60. doi: 10.1016/j.ultras.2008.05.001
Malhotra, V., “Nondestructive Methods for Testing Concrete,” Department of Energy, Mines and Resources, Ottawa, ON, Canada, 1985, pp. 7-110
Madandoust, R., and Mousavi, S. Y., “Fresh and Hardened Properties of Self-Compacting Concrete Containing Metakaolin,” Construction and Building Materials, V. 35, 2012, pp. 752-760. doi: 10.1016/j. conbuildmat.2012.04.109
Abdel-Jawad, Y. A., and Afaneh, M., “Factors Affecting the Relationship between Ultrasonic Pulse Velocity and Concrete Compressive Strength,” Indian Concrete Journal, V. 71, No. 7, 1997, pp. 373-376.
Hamid, R.; Yusof, K. M.; and Zain, M. F. M., “A Combined Ultrasound Method Applied to High Performance Concrete with Silica Fume,” Construction and Building Materials, V. 24, No. 1, 2010, pp. 94-98. doi: 10.1016/j.conbuildmat.2009.08.012
Breysse, D., “Nondestructive Evaluation of Concrete Strength: An Historical Review and a New Perspective by Combining NDT Methods,” Construction and Building Materials, V. 33, 2012, pp. 139-163. doi: 10.1016/j.conbuildmat.2011.12.103
Kou, S.-C.; Poon, C.-S.; and Agrela, F., “Comparisons of Natural and Recycled Aggregate Concretes Prepared with the Addition of Different Mineral Admixtures,” Cement and Concrete Composites, V. 33, No. 8, 2011, pp. 788-795. doi: 10.1016/j.cemconcomp.2011.05.009
info:eu-repo/semantics/openAccess
Hormigón
Craqueo catalítico
Aptitudes mecánicas - Pruebas
Resistencia de materiales
Concrete
Catalytic cracking
Mechanical ability - Testing
Strength of materials
Catalyst spent
Mechanical strengths
Metakaolin
Ultrasonic pulse velocity
http://purl.org/coar/access_right/c_16ec
http://purl.org/coar/version/c_970fb48d4fbd8a85
institution Escuela Colombiana de Ingeniería
collection d_repositorio.escuelaing.edu.co-DSPACE
title Mechanical Performance of Concrete with Waste from Oil Industry
spellingShingle Mechanical Performance of Concrete with Waste from Oil Industry
Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
Estructuras y Materiales
Hormigón
Craqueo catalítico
Aptitudes mecánicas - Pruebas
Resistencia de materiales
Concrete
Catalytic cracking
Mechanical ability - Testing
Strength of materials
Catalyst spent
Mechanical strengths
Metakaolin
Ultrasonic pulse velocity
title_short Mechanical Performance of Concrete with Waste from Oil Industry
title_full Mechanical Performance of Concrete with Waste from Oil Industry
title_fullStr Mechanical Performance of Concrete with Waste from Oil Industry
title_full_unstemmed Mechanical Performance of Concrete with Waste from Oil Industry
title_sort mechanical performance of concrete with waste from oil industry
author Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
Estructuras y Materiales
author_facet Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
Torres Castellanos, Nancy
Torres Agredo, Janneth
Mejía de Gutierrez, Ruby
Estructuras y Materiales
building Repositorio digital
topic Hormigón
Craqueo catalítico
Aptitudes mecánicas - Pruebas
Resistencia de materiales
Concrete
Catalytic cracking
Mechanical ability - Testing
Strength of materials
Catalyst spent
Mechanical strengths
Metakaolin
Ultrasonic pulse velocity
topic_facet Hormigón
Craqueo catalítico
Aptitudes mecánicas - Pruebas
Resistencia de materiales
Concrete
Catalytic cracking
Mechanical ability - Testing
Strength of materials
Catalyst spent
Mechanical strengths
Metakaolin
Ultrasonic pulse velocity
publishDate 2016
language English
publisher ACI American Concrete Institute
physical 8 páginas
format Artículo de revista
description In this paper, the mechanical properties of concrete with an added residue of the petrochemical industry (at levels of 10, 20, 30%), called catalytic cracking catalyst residue (FCC), are evaluated. The mechanical properties evaluated include compressive strength, modulus of elasticity, flexural strength, and ultrasonic pulse velocity. Two reference materials, portland cement concrete without addition and added with 20% of metakaolin (MK), were used. These tests were performed up to 360 days of curing age. Based on the results obtained, correlations were established between the different properties evaluated. The best mechanical performance was obtained with 10% FCC as a cement replacement. En este trabajo se evalúan las propiedades mecánicas del hormigón con un residuo añadido de la industria petroquímica (en niveles del 10, 20 y 30%), denominado residuo de catalizador de craqueo catalítico (FCC). Las propiedades mecánicas evaluadas incluyen la resistencia a la compresión, el módulo de elasticidad, la resistencia a la flexión y la velocidad de los impulsos ultrasónicos. Se utilizaron dos materiales de referencia, hormigón de cemento portland sin adición y adicionado con un 20% de metacaolín (MK). Estos ensayos se realizaron hasta los 360 días de edad de curado. A partir de los resultados obtenidos, se establecieron correlaciones entre las diferentes propiedades evaluadas. Las mejores prestaciones mecánicas se obtuvieron con un 10% de FCC como sustituto del cemento.
issn 0889-325X
url https://repositorio.escuelaing.edu.co/handle/001/1529
url_str_mv https://repositorio.escuelaing.edu.co/handle/001/1529
_version_ 1763137958833029120
score 11.255509