“Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”

Saved in:
Bibliographic Details
Institution:UPTC - Universidad Pedagógica y Tecnológica de Colombia
Main Author: Niño Portilla, Diego Alejandro
Format: Trabajo de grado especialización
Language:Español
Published: Universidad Pedagógica y Tecnológica de Colombia 2023
Subjects:
Online Access:https://repositorio.uptc.edu.co//handle/001/9269
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:repositorio.uptc.edu.co:001-9269
recordtype dspace
spelling Niño Portilla, Diego Alejandro
2024-01-23T14:59:15Z
2024-01-23T14:59:15Z
2023
Niño Portilla, D. A. (2023). “Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.” (Trabajo Especialización). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ingeniería, Tunja.
https://repositorio.uptc.edu.co//handle/001/9269
1 recurso en línea (75 páginas) : ilustraciones
application/pdf
es
Universidad Pedagógica y Tecnológica de Colombia
Facultad de Ingeniería
Tunja
Especialista en Gestión de Integridad y Corrosión
Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by/4.0/
Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/resource_type/c_db06
“Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”
Trabajo de grado especialización
Text
Bibliografía y webgrafía: páginas 61-75.
Especialización
Especialista en Gestión de Integridad y Corrosión
AN, Biwen Annie, et al. Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC). En: Frontiers in Microbiology. 31, marzo, 2020. vol. 11.
API. Damage mechanisms affecting fixed equipment in the refining industry. In API Recomended practice 571. 2a Ed, Emisión 489. API Publishing Services 2011.
ARUNIMA, S. R., et al. Exploration of WO3/BiVO4 composite based hot-dip zinc coating to combat biocorrosion. En: Materials Science and Engineering: b. Septiembre, 2021. vol. 271, p. 115302.
BALAKRISHNAN, Anandkumar, et al. Polydimethylsiloxane–graphene oxide nanocomposite coatings with improved anti-corrosion and anti-biofouling properties. En: Environmental Science and Pollution Research. 8, octubre, 2020.
BEECH, I. B., et al. Biofilms and biocorrosion. En: Understanding biocorrosion. [s.l.]: Elsevier, 2014. p. 33-56.
BERTRON, Alexandra. Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. En: Materials and Structures. 14, octubre, 2014. vol. 47, no. 11 p. 1787-1806.
BRASCA, M., et al. Redox potential to discriminate among species of lactic acid bacteria. En: Journal of Applied Microbiology. 19, junio, 2007. vol. 103, no. 5,p. 1516-1524.
BROWN, Damon C. y TURNER, Raymond J. Biofilms and microbiologically influenced corrosion in the petroleum industry. En: ACS symposium series. Washington, DC: American Chemical Society, 2019. p. 187-203.
CAI, Haoyuan, et al. Sulfide ions-induced release of biocides from a metal-phenolic supramolecular film fabricated on aluminum for inhibition of microbially influenced corrosion. En: Corrosion Science. Mayo, 2020. vol. 167, p. 108534.
CAI, Wei, et al. Antifouling and anticorrosion properties of one-pot synthesized dedoped bromo-substituted polyaniline and its composite coatings. En: Surface and Coatings Technology. Enero, 2018. vol. 334 p. 7-18.
CHANDRASATHEESH, C.; JAYAPRIYA, J. y PRABUNATHAN, P. Fabrication of Ag-TiO2/Cardanol Epoxy-Based Composite Coatings Against Microbiologically Influenced Corrosion of Mild Steel. En: Journal of Polymers and the Environment. 28, septiembre, 2021. vol. 30, no. 4, p. 1528-1546.
CHENG, Xin, et al. Constructing nanostructured functional film on EH40 steel surface for anti-adhesion of Pseudomonas aeruginosa. En: Surface and Coatings Technology. Enero, 2021. vol. 405, p. 126683.
CURLING, Simon F.; CLAUSEN, Carol A. y WINANDY, Jerrold E. Experimental method to quantify progressive stages of decay of wood by basidiomycete fungi. En: International Biodeterioration & Biodegradation. Enero, 2002. vol. 49, no. 1, p. 13-19.
DALL’AGNOL, L. T., & MOURA, J. J. G, Sulphate-reducing bacteria (SRB) and biocorrosion. En: T. LIENGEN, R. BASSÉGUY, D. FÉRON, & I. B. BEECH, Understanding Biocorrosion: Fundamentals and Applications. 1a Ed. Woodhead Publishing Limited 2015, p. 77–106.
DEEPA, M. J., et al. Exploration of Mo incorporated TiO2 composite for sustained biocorrosion control on zinc coating. En: Applied Surface Science. Noviembre, 2019. vol. 494, p. 361-376.
DONG, Yuqiao, et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. En: Bioelectrochemistry. Octubre, 2018. vol. 123, p. 34-44.
DOU, Wenwen, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. En: Corrosion Science. Abril, 2019. vol. 150 [consultado el 8, mayo, 2023], p. 258-267.
DU, Chongwei, et al. Preparation of superhydrophobic steel surfaces with chemical stability and corrosion. En: Coatings. 20, junio, 2019. vol. 9, no. 6, p. 398.
EDUOK, Ubong; FAYE, Omar y SZPUNAR, Jerzy. Effect of benzothiazole biocide on SRB-induced biocorrosion of hot-dip galvanized steel. En: Engineering Failure Analysis. Noviembre, 2018. vol. 93, p. 111-121.
EDUOK, Ubong; OHAERI, Enyinnaya y SZPUNAR, Jerzy. Accelerated corrosion of pipeline steel in the presence of Desulfovibrio desulfuricans biofilm due to carbon source deprivation in CO2 saturated medium. En: Materials Science and Engineering: C. Diciembre, 2019. vol. 105, p. 110095.
FAYYAD, Eman M., et al. Novel electroless deposited corrosion — resistant and anti-bacterial NiP–TiNi nanocomposite coatings. En: Surface and Coatings Technology. Julio, 2019. vol. 369, p. 323-333.
FERRARI, Michele; BENEDETTI, Alessandro y CIRISANO, Francesca. Superhydrophobic coatings from recyclable materials for protection in a real sea environment. En: Coatings [en línea]. 6, mayo, 2019. vol. 9, no. 5 [consultado el 8, mayo, 2023], p. 303. Disponible en Internet: <https://doi.org/10.3390/coatings9050303>. ISSN 2079-6412.
GADD, Geoffrey Michael y DYER, Thomas D. Bioprotection of the built environment and cultural heritage. En: Microbial Biotechnology . 24, julio, 2017. vol. 10, no. 5 , p. 1152-1156.
GARRETT, Trevor Roger; BHAKOO, Manmohan y ZHANG, Zhibing. Bacterial adhesion and biofilms on surfaces. En: Progress in Natural Science. Septiembre, 2008. vol. 18, no. 9, p. 1049-1056.
GAYLARDE, C.; RIBAS SILVA, M. y WARSCHEID, T. Microbial impact on building materials: an overview. En: Materials and Structures. 27, abril, 2003. vol. 36, no. 259, p. 342-352.
GROVER, Navdeep, et al. Acylase-containing polyurethane coatings with anti-biofilm activity. En: Biotechnology and Bioengineering [en línea]. 20, junio, 2016. vol. 113, no. 12, p. 2535-2543.
GU, Tingyue. New Understandings of Biocorrosion Mechanisms and their Classifications. En: Journal of Microbial & Biochemical Technology. 2012. vol. 04, n.04.
GUO, Feng, et al. Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating. En: Progress in Organic Coatings. Junio, 2023. vol. 179, p. 107512.
GUO, Jing, et al. Polymers for combating biocorrosion. En: Frontiers in Materials [en línea]. 12, marzo, 2018. vol. 5 [consultado el 7, mayo, 2023]. Disponible en Internet: <https://doi.org/10.3389/fmats.2018.00010>. ISSN 2296-8016.
I. MAREK, Miroslav. Introduction to the fundamentals of corrosion. En: Corrosion: fundamentals, testing, and protection [en línea]. 9a ed. [s.l.]: ASM International, 2003 [consultado el 7, mayo, 2023]. p. 3-4. Disponible en Internet: <https://doi.org/10.31399/asm.hb.v13a.a0003577>.
IJAOLA, Ahmed Olanrewaju; FARAYIBI, Peter Kayode y ASMATULU, Eylem. Superhydrophobic coatings for steel pipeline protection in oil and gas industries: a comprehensive review. En: Journal of Natural Gas Science and Engineering. Noviembre, 2020. vol. 83, p. 103544.
JAVAHERDASHTI, Reza. On the role of fluid characteristics on promoting microbiologically influenced corrosion (MIC). En: Fluid Mechanics research International Journal. 2019. vol. 3, no. 1, p. 17-18.
JIA, Ru, et al. Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. En: International Biodeterioration & Biodegradation. Febrero, 2019. vol. 13, p. 42-58.
KIANI KHOUZANI, Mahdi, et al. Microbiologically Influenced Corrosion of a Pipeline in a Petrochemical Plant. En: Metals. 19, abril, 2019. vol. 9, no. 4, p. 459.
KOKILARAMANI, Seenivasan, et al. Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures - A review. En: Chemosphere. Febrero, 2021. vol. 265, p. 129075.
KRISHNAMURTHY, Ajay, et al. Superiority of graphene over polymer coatings for prevention of microbially induced corrosion. En: Scientific Reports. 9, septiembre, 2015. vol. 5, no. 1.
LEKBACH, Yassir, et al. Catechin hydrate as an eco-friendly biocorrosion inhibitor for 304L stainless steel with dual-action antibacterial properties against Pseudomonas aeruginosa biofilm. En: Corrosion Science. Agosto, 2019. vol. 157, p. 98-108.
LEKBACH, Yassir, et al. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. En: Bioelectrochemistry. Agosto, 2019. vol. 128, p. 193-203.
LI, Haiyan, et al. Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings. En: Progress in Organic Coatings. Febrero, 2018. vol. 115, p. 164-171.
LI, Ji, et al. Facile Li-Al layered double hydroxide films on Al alloy for enhanced hydrophobicity, anti-biofouling and anti-corrosion performance. En: Journal of Materials Science & Technology. Diciembre, 2020.
LI, Ling-Yu, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review. En: Acta Biomaterialia [en línea]. Octubre, 2018. vol. 79, p. 23-36.
LI, Yingchao, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. En: Journal of Materials Science & Technology. Octubre, 2018. vol. 34, no. 10, p. 1713-1718.
LIDUINO, Vitor, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection. En: Colloids and Surfaces B: biointerfaces. Junio, 2021. vol. 202, p. 111701.
LITTLE, B. J., et al. Microbially influenced corrosion—Any progress? En: Corrosion Science. Julio, 2020. vol. 170, p. 108641.
LIU, Bo, et al. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. En: Bioelectrochemistry. Octubre, 2020. vol. 135, p. 107551.
LIU, Tao y CHENG, Y. Frank. The influence of cathodic protection potential on the biofilm formation and corrosion behaviour of an X70 steel pipeline in sulfate reducing bacteria media. En: Journal of Alloys and Compounds. Diciembre, 2017. vol. 729, p. 180-188.
LÓPEZ-ORTEGA, A., et al. Development of a superhydrophobic and bactericide organic topcoat to be applied on thermally sprayed aluminum coatings in offshore submerged components. En: Progress in Organic Coatings. Diciembre, 2019. vol. 137, p. 105376.
LOTO, C. A. Microbiological corrosion: mechanism, control and impact—a review. En: The International Journal of Advanced Manufacturing Technology. 15, mayo, 2017. vol. 92, no. 9-12, p. 4241-4252.
MANOHARAN, Kapil y BHATTACHARYA, Shantanu. Superhydrophobic surfaces review: functional application, fabrication techniques and limitations. En: Journal of Micromanufacturing. Mayo, 2019. vol. 2, no. 1, p. 59-78.
MANSFELD, F., et al. Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites. En: Progress in Organic Coatings [en línea]. Enero, 1997. vol. 30, no. 1-2, p. 89-100.
MANSFELD, F., et al. Evaluation of corrosion protection by polymer coatings using electrochemical impedance spectroscopy and noise analysis. En: Electrochimica Acta [en línea]. Junio, 1998. vol. 43, no. 19-20, p. 2933-2945.
MEENA, Mukesh Kumar, et al. Development of polyurethane-based superhydrophobic coatings on steel surfaces. En: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 3, febrero, 2020. vol. 378, no. 2167, p. 20190446.
MIRMOHSENI, Abdolreza; AZIZI, Maryam y SEYED DORRAJI, Mir Saeed. Facile synthesis of copper/ reduced single layer graphene oxide as a multifunctional nanohybrid for simultaneous enhancement of antibacterial and antistatic properties of waterborne polyurethane coating. En: Progress in Organic Coatings. Junio, 2019. vol. 131, p. 322-332.
NACE INTERNATIONAL. TM 0106 - 2016 Detection, testing, and evaluation of Microbiologically Influenced Corrosion (MIC) on external surfaces of buried pipelines, Emisión 21248. Nace International 2016
O'TOOLE, George; KAPLAN, Heidi B. y KOLTER, Roberto. Biofilm formation as microbial development. En: Annual Review of Microbiology. Octubre, 2000. vol. 54, no. 1, p. 49-79.
OUYANG, Yibo, et al. Nanowall enclosed architecture infused by lubricant: a bio-inspired strategy for inhibiting bio-adhesion and bio-corrosion on stainless steel. En: Surface and Coatings Technology. Enero, 2020. vol. 381, p. 125143.
PACKIAVATHY, Issac Abraham SybiyaVasantha, et al. The control of microbially induced corrosion by methyl eugenol – A dietary phytochemical with quorum sensing inhibitory potential. En: Bioelectrochemistry . Agosto, 2019. vol. 128, p. 186-192.
PAKIET, Marta, et al. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel. En: Bioelectrochemistry. Agosto, 2019. vol. 128, p. 252-262.
PARTHIPAN, Punniyakotti, et al. Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. En: Journal of Molecular Liquids [en línea]. Julio, 2018. vol. 261 [consultado el 8, mayo, 2023], p. 473-479. Disponible en Internet: <https://doi.org/10.1016/j.molliq.2018.04.045>. ISSN 0167-7322.
PARTHIPAN, Punniyakotti, et al. Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. En: Journal of Molecular Liquids. Julio, 2018. vol. 261, p. 473-479.
PARTHIPAN, Punniyakotti; CHENG, Liang y RAJASEKAR, Aruliah. Glycyrrhiza glabra extract as an eco-friendly inhibitor for microbiologically influenced corrosion of API 5LX carbon steel in oil well produced water environments. En: Journal of Molecular Liquids. Julio, 2021. vol. 333, p. 115952
PEHKONEN, Simo Olavi y YUAN, Shaojun. Novel antibacterial coatings for biofouling and biocorrosion inhibition. En: Interface science and technology. [s.l.]: Elsevier, 2018. p. 257-372.
PEREIRA, M. A., et al. Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium. En: Journal of Industrial Microbiology and Biotechnology. 1, marzo, 2000. vol. 24, no. 3, p. 181-186.
QIAN, Hongchang, et al. Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. En: Corrosion Science [en línea]. Diciembre, 2018. vol. 145 [consultado el 7, mayo, 2023], p. 151-161. Disponible en Internet: <https://doi.org/10.1016/j.corsci.2018.09.020>. ISSN 0010-938X.
RAGHUPATHI, Prem K., et al. Synergistic interactions within a multispecies biofilm enhance individual species protection against grazing by a pelagic protozoan. En: Frontiers in Microbiology. 9, enero, 2018. vol. 8, p 1-11.
RASHEED, P. Abdul, et al. Recent advancements of nanomaterials as coatings and biocides for the inhibition of sulfate reducing bacteria induced corrosion. En: Current Opinion in Chemical Engineering. Septiembre, 2019. vol. 25, p. 35-42.
RASHEED, P. Abdul, et al. Controlling the biocorrosion of sulfate-reducing bacteria (SRB) on carbon steel using ZnO/chitosan nanocomposite as an eco-friendly biocide. En: Corrosion Science. Marzo, 2019. vol. 148, p. 397-406.
SAJI, Viswanathan S. y UMOREN, Saviour A. eds. Corrosion inhibitors in the oil and gas industry [en línea]. [s.l.]: Wiley, 2020 [consultado el 8, mayo, 2023].
SHAHRYARI, Z.; GHEISARI, Kh y MOTAMEDI, H. Effect of sulfate reducing Citrobacter sp. strain on the corrosion behavior of API X70 microalloyed pipeline steel. En: Materials Chemistry and Physics. Octubre, 2019. vol. 236, p. 121799.
SHI, Xianbo, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel. En: Journal of Materials Science & Technology. Diciembre, 2018. vol. 34, no. 12, p. 2480-2491.
STANASZEK-TOMAL, Elżbieta. Environmental factors causing the development of microorganisms on the surfaces of national cultural monuments made of mineral building materials—review. En: Coatings. 10, diciembre, 2020. vol. 10, no. 12, p. 1203.
STANASZEK-TOMAL, Elżbieta. Environmental factors causing the development of microorganisms on the surfaces of national cultural monuments made of mineral building materials—review. En: Coatings. 10, diciembre, 2020. vol. 10, no. 12, p. 1203.
SUN, Ke, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel. En: Applied Surface Science. Abril, 2018. vol. 436, p. 263-267.
SUN, Ke, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel. En: Applied Surface Science. Abril, 2018. vol. 436, p. 263-267.
TALBOT, David E. J. y TALBOT, James D. R. Corrosion science and technology. 3a ed. [s.l.]: Taylor & Francis Group, 2018. 568 p. ISBN 9781351259910.
TELEGDI, J., SHABAN, A., & TRIF, L. Microbiologically influenced corrosion (MIC). Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission 2017, p 191–214.
TIWARI, Atul y HIHARA, L. H. High performance reaction-induced quasi-ceramic silicone conversion coating for corrosion protection of aluminium alloys. En: Progress in Organic Coatings [en línea]. Septiembre, 2010. vol. 69, no. 1, p. 16-25.
TRAN, Thu Hien, et al. Influence of the intrinsic characteristics of mortars on biofouling by Klebsormidium flaccidum. En: International Biodeterioration & Biodegradation. Mayo, 2012. vol. 70, p. 31-39.
USHER, K. M., KAKSONEN, A. H., COLE, I., & MARNEY, D. Critical review: Microbially influenced corrosion of buried carbon steel pipes. International Biodeterioration and Biodegradation 2014. vol 93, p. 84–106
VIDELA, Héctor A. Prevention and control of biocorrosion. En: International Biodeterioration & Biodegradation. Junio, 2002. vol. 49, no. 4, p. 259-270.
WANG, Di, et al. Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. En: Corrosion Science. Diciembre, 2020. vol. 177, p. 108993.
WEI, Huige, et al. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. En: Journal of Materials Chemistry A [en línea]. 2015. vol. 3, no. 2, p. 469-480.
XU, Dake; LI, Yingchao y GU, Tingyue. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. En: Bioelectrochemistry. Agosto, 2016. vol. 110 p. 52-58.
prepared by double cathode glow discharge technique. En: Applied Surface Science. Julio, 2018. vol. 447, p. 500-511.
YANG, Chuntian, et al. Microbiologically influenced corrosion behavior of friction stir welded S32654 super austenitic stainless steel in the presence of Acidithiobacillus caldus SM-1 biofilm. En: Materials Today Communications, diciembre, 2020. vol. 25, p. 101491
YIN, Ke; LIU, Hongwei y CHENG, Y. Frank. Microbiologically influenced corrosion of X52 pipeline steel in thin layers of solution containing sulfate-reducing bacteria trapped under disbonded coating. En: Corrosion Science. Diciembre, 2018. vol. 145, p. 271-282.
ZHAI, Xiaofan, et al. Microbial Corrosion Resistance and Antibacterial Property of Electrodeposited Zn–Ni–Chitosan Coatings. En: Molecules [en línea]. 22, mayo, 2019. vol. 24, no. 10, p. 1974.
ZHAI, Xiaofan, et al. Corrosion behavior of the chitosan-zinc composite films in sulfate-reducing bacteria. En: Surface and Coatings Technology. Junio, 2018. vol. 344, p. 259-268.
ZHANG, Dawei, et al. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. En: Journal of Coatings Technology and Research. 19, octubre, 2015. vol. 13, no. 1, p. 11-29.
ZHANG, Dawei, et al. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. En: Journal of Coatings Technology and Research. 19, octubre, 2015. vol. 13, no. 1, p. 11-29.
ZHANG, Zhi-hui, et al. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function. En: Scientific Reports. 1, marzo, 2018. vol. 8, no. 1
ZHOU, Enze, et al. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing. En: Journal of Materials Science & Technology [en línea]. Julio, 2020. vol. 48 [consultado el 7, mayo, 2023], p. 72-83. Disponible en Internet: <https://doi.org/10.1016/j.jmst.2020.01.055>. ISSN 1005-0302.
ZHOU, Wenhao, et al. Novel pH-responsive tobramycin-embedded micelles in nanostructured multilayer-coatings of chitosan/heparin with efficient and sustained antibacterial properties. En: Materials Science and Engineering: C. Septiembre, 2018. vol. 90, p. 693-705.
Corrosión y anticorrosivos
Revestimientos protectores
Control de la corrosión
Revestimientos metálicos
Biodegradación
Público general
institution UPTC - Universidad Pedagógica y Tecnológica de Colombia
collection d_repositorio.uptc.edu.co-DSPACE
title “Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”
spellingShingle “Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”
Niño Portilla, Diego Alejandro
Niño Portilla, Diego Alejandro
Corrosión y anticorrosivos
Revestimientos protectores
Control de la corrosión
Revestimientos metálicos
Biodegradación
title_short “Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”
title_full “Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”
title_fullStr “Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”
title_full_unstemmed “Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”
title_sort “avances en el control y mitigación de la corrosión influenciada microbiológicamente (mic) en aceros al carbono de la industria oil&gas empleando recubrimientos compuestos orgánicos. estado del arte.”
author Niño Portilla, Diego Alejandro
Niño Portilla, Diego Alejandro
author_facet Niño Portilla, Diego Alejandro
Niño Portilla, Diego Alejandro
building Repositorio digital
topic Corrosión y anticorrosivos
Revestimientos protectores
Control de la corrosión
Revestimientos metálicos
Biodegradación
topic_facet Corrosión y anticorrosivos
Revestimientos protectores
Control de la corrosión
Revestimientos metálicos
Biodegradación
publishDate 2023
language Español
publisher Universidad Pedagógica y Tecnológica de Colombia
physical 1 recurso en línea (75 páginas) : ilustraciones
format Trabajo de grado especialización
url https://repositorio.uptc.edu.co//handle/001/9269
url_str_mv https://repositorio.uptc.edu.co//handle/001/9269
_version_ 1789502060489605120
score 11.260164