Techo plantado como dispositivo de climatización pasiva en el trópico.

Se determina el comportamiento térmico de un prototipo experimental de techo plantado, que pueda ser instalado sobre sistemas de cubiertas inclinadas en láminas onduladas de fibrocemento, ampliamente utilizas en nuestro medio. La investigación demostró las ventajas del uso de los techos plantados co...

Full description

Saved in:
Bibliographic Details
Institution:Universidad Católica de Colombia
Main Authors: Osuna-Motta, Iván, Herrera-Cáceres, Carlos, López-Bernal, Oswaldo
Format: Artículo de revista
Language:Español
Published: Universidad Católica de Colombia 2017-05-29
Subjects:
Online Access:https://hdl.handle.net/10983/28811
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:repository.ucatolica.edu.co:10983-28811
recordtype dspace
spelling Osuna-Motta, Iván
Herrera-Cáceres, Carlos
López-Bernal, Oswaldo
2017-05-29 00:00:00
2023-01-23T16:05:10Z
2017-05-29 00:00:00
2023-01-23T16:05:10Z
2017-05-29
Se determina el comportamiento térmico de un prototipo experimental de techo plantado, que pueda ser instalado sobre sistemas de cubiertas inclinadas en láminas onduladas de fibrocemento, ampliamente utilizas en nuestro medio. La investigación demostró las ventajas del uso de los techos plantados como dispositivos de enfriamiento pasivo, en las condiciones climáticas y meteorológicas específicas de la ciudad de Cali, donde la cubierta representa la mayor fuente de ganancia térmica. Durante la fase experimental, se construyeron un módulo testigo y dos módulos de prueba sobre los cuales se instalaron los prototipos y se registraron periódicamente los valores de temperatura superficial de la envolvente, y de temperatura y humedad relativa del aire exterior e interior. Utilizando un método comparativo, se pudo establecer y cuantificar el efecto positivo del prototipo sobre el comportamiento térmico de la envolvente en las condiciones locales, demostrando su utilidad.
The study aims to determine the thermal performance of an experimental green-roof prototype that can be installed on pitched roofs of fiber cement corrugated sheets, widely used in our environment. Research results showed the advantages of using green roofs as a passive cooling device in the specific climate and weather conditions of a place such as Cali, Colombia, where roofs are the greatest source of heat gain. During the experimental phase, a control module and two test modules were built, where the green-roof prototypes were installed; surface temperature of the envelope and temperature and relative humidity of indoor and outdoor air were periodically recorded. Using a comparative method, it was possible to establish and quantify the positive effect of the prototype on the thermal performance of the envelope in local conditions, demonstrating its usefulness.
text/html
application/pdf
application/epub+zip
application/xml
application/zip
10.14718/RevArq.2017.19.1.1109
2357-626X
1657-0308
https://hdl.handle.net/10983/28811
https://doi.org/10.14718/RevArq.2017.19.1.1109
spa
Universidad Católica de Colombia
https://revistadearquitectura.ucatolica.edu.co/article/download/1109/1369
https://revistadearquitectura.ucatolica.edu.co/article/download/1109/pdf%2006
https://revistadearquitectura.ucatolica.edu.co/article/download/1109/1885
https://revistadearquitectura.ucatolica.edu.co/article/download/1109/1942
https://revistadearquitectura.ucatolica.edu.co/article/download/1109/2768
Núm. 1 , Año 2017 : Enero - junio
55
1
42
19
Revista de Arquitectura (Bogotá)
Akbari, H., Menon, S. y Rosenfeld, A. (2009). Global cooling: increasing world-wide urban albedos to offset CO 2. Climatic Change, 94 (3), 275-286. doi: https://doi.org/10.1007/s10584-008-9515-9
Alexandri, E. y Jones, P. (2008). Temperature decreases in an urban canyon due to green walls ygreen roofs in diverse climates. Building and Environment, 43 (4), 480-493. doi: https://doi.org/10.1016/j.buildenv.2006.10.055
Ayata, T., Tabares-Velasco, P. C. y Srebric, J. (2011). An investigation of sensible heat fluxes at a green roof in a laboratory setup. Building and Environment, 46 (9), 1851-1861. doi: https://doi.org/10.1016/j.buildenv.2011.03.006
Bansal, N., Hauser, G. y Minke, G. (1994). Passive building design, a Handbook of Natural Climatic Control. Elsevier Science B. V.
Bell, H. y Spolek, G. (2009). Measured energy performance of greenroofs. Paper presented at the Seventh Annual International Greening Rooftops for Sustainable Communities Conference, Atlanta, GA.
Fajardo Velazco, L. F. (2005). Desempeño costo-beneficio de dos sistemas pasivos de climatización en cubiertas para climas cálidos-subhúmedos (Tesis de maestría). Universidad de Colima, México. Recuperado de http://digeset.ucol.mx/tesis_posgrado/resumen.phpID=1566
Feng, C., Meng, Q. y Zhang, Y. (2010). Theoretical and experimental analysis of the energy balance of extensive green roofs. Energy and buildings, 42 (6), 959-965. doi: http://dx.doi.org/10.1016/j.enbuild.2009.12.014
Gamboa, J. D., Rosillo, M. E., Herrera, C. A., López Bernal, O. e Iglesias García, V. (2011). Confort ambiental en vivienda de interés social en Cali. Cali: Programa Editorial Universidad del Valle.
Gameros González, G. (2007). Agua encapsulada como amortiguador térmico sobre losas de concreto (Tesis de maestría). Universidad de Colima, México. Recuperado de http://digeset.ucol.mx/tesis_posgrado/resumen.phpID=1679
González García, S. I. (2011). Estudio experimental del comportamiento térmico de sistemas pasivos de enfriamiento cálido-húmedo (Tesis de maestría). Universidad Internacional de Andalucía, España. Recuperado de http://dspace.unia.es/bitstream/handle/10334/778/0152_Gonzalez.pdfsequence=3
Haro Carbajal, E. T. (2009). Comportamiento de dos tipos de cubiertas vegetales, como dispositivos de climatización para climas cálido sub-húmedos. Universidad de Colima, México. Recuperado de http://digeset.ucol.mx/tesis_posgrado/resumen.phpID=1736
Hodo-Abalo, S., Banna, M. y Zeghmati, B. (2012). Performance analysis of a planted roof as a passive cooling technique in hot-humid tropics. Renewable Energy, 39 (1), 140-148. doi: https://doi.org/10.1016/j.renene.2011.07.029
Humphreys, M. A. y Nicol, J. F. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and buildings, 34 (6), 667-684. doi: https://doi.org/10.1016/S0378-7788(02)00018-X
Jim, C. Y. y He, H. (2010). Coupling heat flux dynamics with meteorological conditions in the green roof ecosystem. Ecological Engineering, 36 (8), 1052-1063. doi: http://dx.doi.org/10.1016/j.ecoleng.2010.04.018
Kotsiris, G., Androutsopoulos, A., Polychroni, E. y Nektarios, P. A. (2012). Dynamic U-value estimation and energy simulation for green roofs. Energy and buildings, 45, 240-249. doi: http://dx.doi.org/10.1016/j.enbuild.2011.11.005
Lazzarin, R. M., Castellotti, F. y Busato, F. (2005). Experimental measurements and numerical modelling of a green roof. Energy and Buildings, 37 (12), 1260-1267. doi: 10.1016/j.enbuild.2005.02.001
Mentens, J., Raes, D. y Hermy, M. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and urban planning, 77 (3), 217-226. doi: https://doi.org/10.1016/j.landurbplan.2005.02.010
Morales, G. C. B. y Cruz, E. M. G. (2003). Confort térmico en el trópico húmedo: experiencias de campo en viviendas naturalmente ventiladas. Ambiente construido, 3 (2), 47-55. doi: http://www.seer.ufrgs.br/index.php/ambienteconstruido/article/view/3450/1869
Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A. y Mihalakakou, G. (2001). Analysis of the green roof thermal properties and investigation of its energy performance. Energy and buildings, 33 (7), 719-729. doi: https://doi.org/10.1016/S0378-7788(01)00062-7
Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N. et al. (2007). Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience, 57 (10), 823-833. doi: https://doi.org/10.1641/B571005
Olgyay, V. (1968). Clima y arquitectura en Colombia. Cali: Universidad del Valle.
Onmura, S., Matsumoto, M. y Hokoi, S. (2001). Study on evaporative cooling effect of roof lawn gardens. Energy and buildings, 33 (7), 653-666. doi: http://dx.doi.org/10.1016/S0378-7788(00)00134-1
Osuna Motta, I. (2013). Prototipo de techo plantado como dispositivo de climatización pasiva en Cali (Trabajo de grado). Universidad del Valle, Cali, Colombia.
Parizotto, S. y Lamberts, R. (2011). Investigation of green roof thermal performance in temperate climate: A case study of an experimental building in Florianópolis city, Southern Brazil. Energy and buildings, 43 (7), 1712-1722. doi: https://doi.org/10.1016/j.enbuild.2011.03.014
Sánchez G. L. H. (1993). Evaluación de un techo estanque como sistema de enfriamiento pasivo en un clima cálido sub-húmedo (Tesis de maestría). Universidad de Colima, México. Recuperado de http://digeset.ucol.mx/tesis_posgrado/resumen.phpID=154
Santamouris, M. y Asimakopoulos, D. (1996). Passive cooling of buildings. London: Earthscan/James & James.
Santana, L. M., Escobar, L. A. y Capote, P. A. (2011). Influencia de los cambios de ocupación del suelo de Cali (Colombia), entre 1984 y 2003, en la temperatura de superficie. Ingeniería y Competitividad, 13(1). Recuperado de http://www.redalyc.org/html/2913/291323660011/
Susca, T., Gaffin, S. y Dell'Osso, G. (2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 159 (8), 2119-2126. doi: https://doi.org/10.1016/j.envpol.2011.03.007
Tabares-Velasco, P. C. y Srebric, J. (2011). Experimental quantification of heat and mass transfer process through vegetated roof samples in a new laboratory setup. International Journal of Heat and Mass Transfer, 54 (25), 5149-5162. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.034
Theodosiou, T. G. (2003). Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy and buildings, 35 (9), 909-917. doi: https://doi.org/10.1016/S0378-7788(03)00023-9
Tsang, S. y Jim, C. (2011). Theoretical evaluation of thermal and energy performance of tropical green roofs. Energy, 36 (5), 3590-3598. doi: https://doi.org/10.1016/j.energy.2011.03.072
UCLA, E. d. t. (2013). Climate consultant software (Version 5.4). www.energy-design-tools.aud.ucla.edu.
Wong, N. H., Chen, Y., Ong, C. L. y Sia, A. (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 38 (2), 261-270. doi: http://dx.doi.org/10.1016/S0360-1323(02)00066-5
Iván Osuna-Motta - 2017
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://revistadearquitectura.ucatolica.edu.co/article/view/1109
Heat transfer
Passive cooling
Sustainability
Thermal comfort
Green roofs
Confort térmico
Enfriamiento pasivo
Sostenibilidad
Transferencia de calor
Techos verdes
Conforto térmico
Refrigeração passiva
Sustentabilidade
Telhados verdes
Transferência de calor
Techo plantado como dispositivo de climatización pasiva en el trópico.
Green roofs as a passive cooling device in the tropics.
Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/version/c_970fb48d4fbd8a85
Text
info:eu-repo/semantics/article
Journal article
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
Publication
institution Universidad Católica de Colombia
collection d_repository.ucatolica.edu.co-DSPACE
title Techo plantado como dispositivo de climatización pasiva en el trópico.
spellingShingle Techo plantado como dispositivo de climatización pasiva en el trópico.
Osuna-Motta, Iván
Herrera-Cáceres, Carlos
López-Bernal, Oswaldo
Osuna-Motta, Iván
Herrera-Cáceres, Carlos
López-Bernal, Oswaldo
Heat transfer
Passive cooling
Sustainability
Thermal comfort
Green roofs
Confort térmico
Enfriamiento pasivo
Sostenibilidad
Transferencia de calor
Techos verdes
Conforto térmico
Refrigeração passiva
Sustentabilidade
Telhados verdes
Transferência de calor
title_short Techo plantado como dispositivo de climatización pasiva en el trópico.
title_full Techo plantado como dispositivo de climatización pasiva en el trópico.
title_fullStr Techo plantado como dispositivo de climatización pasiva en el trópico.
title_full_unstemmed Techo plantado como dispositivo de climatización pasiva en el trópico.
title_sort techo plantado como dispositivo de climatización pasiva en el trópico.
author Osuna-Motta, Iván
Herrera-Cáceres, Carlos
López-Bernal, Oswaldo
Osuna-Motta, Iván
Herrera-Cáceres, Carlos
López-Bernal, Oswaldo
author_facet Osuna-Motta, Iván
Herrera-Cáceres, Carlos
López-Bernal, Oswaldo
Osuna-Motta, Iván
Herrera-Cáceres, Carlos
López-Bernal, Oswaldo
building Repositorio digital
topic Heat transfer
Passive cooling
Sustainability
Thermal comfort
Green roofs
Confort térmico
Enfriamiento pasivo
Sostenibilidad
Transferencia de calor
Techos verdes
Conforto térmico
Refrigeração passiva
Sustentabilidade
Telhados verdes
Transferência de calor
topic_facet Heat transfer
Passive cooling
Sustainability
Thermal comfort
Green roofs
Confort térmico
Enfriamiento pasivo
Sostenibilidad
Transferencia de calor
Techos verdes
Conforto térmico
Refrigeração passiva
Sustentabilidade
Telhados verdes
Transferência de calor
publishDate 2017-05-29
language Español
publisher Universidad Católica de Colombia
format Artículo de revista
description Se determina el comportamiento térmico de un prototipo experimental de techo plantado, que pueda ser instalado sobre sistemas de cubiertas inclinadas en láminas onduladas de fibrocemento, ampliamente utilizas en nuestro medio. La investigación demostró las ventajas del uso de los techos plantados como dispositivos de enfriamiento pasivo, en las condiciones climáticas y meteorológicas específicas de la ciudad de Cali, donde la cubierta representa la mayor fuente de ganancia térmica. Durante la fase experimental, se construyeron un módulo testigo y dos módulos de prueba sobre los cuales se instalaron los prototipos y se registraron periódicamente los valores de temperatura superficial de la envolvente, y de temperatura y humedad relativa del aire exterior e interior. Utilizando un método comparativo, se pudo establecer y cuantificar el efecto positivo del prototipo sobre el comportamiento térmico de la envolvente en las condiciones locales, demostrando su utilidad. The study aims to determine the thermal performance of an experimental green-roof prototype that can be installed on pitched roofs of fiber cement corrugated sheets, widely used in our environment. Research results showed the advantages of using green roofs as a passive cooling device in the specific climate and weather conditions of a place such as Cali, Colombia, where roofs are the greatest source of heat gain. During the experimental phase, a control module and two test modules were built, where the green-roof prototypes were installed; surface temperature of the envelope and temperature and relative humidity of indoor and outdoor air were periodically recorded. Using a comparative method, it was possible to establish and quantify the positive effect of the prototype on the thermal performance of the envelope in local conditions, demonstrating its usefulness.
issn 1657-0308
url https://hdl.handle.net/10983/28811
url_str_mv https://hdl.handle.net/10983/28811
_version_ 1763049559728062464
score 11.255725